IL-1beta stimulates alveolar fluid absorption in fetal guinea pig lungs via the hypothalamus-pituitary-adrenal gland axis.
We tested the hypothesis that interleukin (IL)-1beta-induced cortisol synthesis stimulates alveolar fluid clearance in preterm fetuses. IL-1beta was administered subcutaneously daily to timed-pregnant guinea pigs for 3 days with and without simultaneous cortisol synthesis inhibition by metyrapone. Fetuses were obtained by abdominal hysterotomy at 61 and 68 days gestation and instilled with isosmolar 5% albumin in the lungs, and alveolar fluid movement was measured over 1 h from the change in alveolar protein concentration. Alveolar fluid clearance was induced at 61 days gestation and stimulated at 68 days gestation by IL-1beta, which both were attenuated by cortisol synthesis inhibition. Plasma ACTH and cortisol concentrations were increased by IL-1beta at both gestational ages, and metyrapone reduced cortisol concentrations. IL-1beta was mostly low or undetectable in both fetal and maternal blood. Prenatal alveolar fluid clearance, when present as well as IL-1beta induced, was always propranolol and amiloride sensitive, suggesting that beta-adrenoceptor stimulation and amiloride-sensitive Na+ channels were critical for fluid absorption. IL-1beta increased lung beta-adrenoceptor density at gestation day 61, and cortisol synthesis inhibition attenuated the increased beta-adrenoceptor density. Epithelial Na+ channel and Na+-K+-ATPase subunit expressions were both increased by IL-1beta and attenuated by cortisol synthesis inhibition. These results may explain why babies delivered preterm after intrauterine inflammation have a reduced risk of developing severe respiratory distress.[1]References
- IL-1beta stimulates alveolar fluid absorption in fetal guinea pig lungs via the hypothalamus-pituitary-adrenal gland axis. Ye, X., Acharya, R., Herbert, J.B., Hamilton, S.E., Folkesson, H.G. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg