The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The 6-phosphogluconate dehydrogenase from Trypanosoma cruzi: the absence of two inter-subunit salt bridges as a reason for enzyme instability.

The third enzyme of the pentose phosphate pathway (PPP), 6-phosphogluconate dehydrogenase ( 6PGDH), is present in the four major stages of Trypanosoma cruzi, CL Brener clone. The enzyme was too unstable to be purified from epimastigote cell-free extracts. Two genes encoding 6PGDH were cloned and sequenced; the predicted amino acid sequences differ only in five non-essential residues. Since Southern blots suggested the presence of a single copy per haploid genome, the two genes found are probably alleles. One of these genes, encoding a protein with 78.6% identity with the Trypanosoma brucei 6PGDH, was expressed in Escherichia coli as an active recombinant enzyme, which was as unstable as the native 6PGDH. Modeling of the T. cruzi enzyme using the three-dimensional structure of the T. brucei 6PGDH as template suggested the lack of two out of five salt bridges proposed to strengthen subunit interactions in the active dimer. Restoring of these bridges by site-directed mutagenesis resulted in a more stable recombinant T. cruzi 6PGDH, which was used to determine the kinetic parameters. The K(m) value for 6-phosphogluconate (22.2+/-0.4 microM) was identical to the values reported for 6PGDHs from mammals, but the K(m) for NADP (5.9+/-0.2 microM) was significantly lower than the value reported for the human enzyme, and closer to that for the T. brucei enzyme. This suggests the possibility that inhibitors of the T. brucei 6PGDH, under development as potential drugs against African Trypanosomiasis, might also be successful for the chemotherapy of Chagas disease.[1]

References

 
WikiGenes - Universities