The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs.

The conserved RCN family of proteins can bind and directly regulate calcineurin, a Ca(2+)-activated protein phosphatase involved in immunity, heart growth, muscle development, learning, and other processes. Whereas high levels of RCNs can inhibit calcineurin signaling in fungal and animal cells, RCNs can also stimulate calcineurin signaling when expressed at endogenous levels. Here we show that the stimulatory effect of yeast Rcn1 involves phosphorylation of a conserved serine residue by Mck1, a member of the GSK-3 family of protein kinases. Mutations at the GSK-3 consensus site of Rcn1 and human DSCR1/MCIP1 abolish the stimulatory effects on calcineurin signaling. RCNs may therefore oscillate between stimulatory and inhibitory forms in vivo in a manner similar to the Inhibitor-2 regulators of type 1 protein phosphatase. Computational modeling indicates a biphasic response of calcineurin to increasing RCN concentration such that protein phosphatase activity is stimulated by low concentrations of phospho-RCN and inhibited by high concentrations of phospho- or dephospho-RCN. This prediction was verified experimentally in yeast cells expressing Rcn1 or DSCR1/MCIP1 at different concentrations. Through the phosphorylation of RCNs, GSK-3 kinases can potentially contribute to a positive feedback loop involving calcineurin-dependent up-regulation of RCN expression. Such feedback may help explain the large induction of DSCR1/MCIP1 observed in brain of Down syndrome individuals.[1]

References

  1. GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Hilioti, Z., Gallagher, D.A., Low-Nam, S.T., Ramaswamy, P., Gajer, P., Kingsbury, T.J., Birchwood, C.J., Levchenko, A., Cunningham, K.W. Genes Dev. (2004) [Pubmed]
 
WikiGenes - Universities