The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases.

Telomeres are capping structures at the ends of eukaryotic chromosomes composed of TTAGGG repeats bound to an array of specialized proteins. Telomeres are heterochromatic regions. Yeast and flies with defects in activities that modify the state of chromatin also have abnormal telomere function, but the putative role of chromatin-modifying activities in regulating telomeres in mammals is unknown. Here we report on telomere length and function in mice null with respect to both the histone methyltransferases (HMTases) Suv39h1 and Suv39h2 (called SUV39DN mice). Suv39h1 and Suv39h2 govern methylation of histone H3 Lys9 (H3-Lys9) in heterochromatic regions. We show that primary cells derived from SUV39DN mice have abnormally long telomeres relative to wild-type controls. Using chromatin immunoprecipitation (ChIP) analysis, we found that telomeres were enriched in di- and trimethylated H3-Lys9 but that telomeres of SUV39DN cells had less dimethylated and trimethylated H3-Lys9 but more monomethylated H3-Lys9. Concomitant with the decrease in H3-Lys9 methylation, telomeres in SUV39DN cells had reduced binding of the chromobox proteins Cbx1, Cbx3 and Cbx5, homologs of Drosophila melanogaster heterochromatin protein 1 ( HP1). These findings indicate substantial changes in the state of telomeric heterochromatin in SUV39DN cells, which are associated with abnormal telomere elongation. Taken together, the results indicate epigenetic regulation of telomere length in mammals by Suv39h1 and Suv39h2.[1]

References

  1. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. García-Cao, M., O'Sullivan, R., Peters, A.H., Jenuwein, T., Blasco, M.A. Nat. Genet. (2004) [Pubmed]
 
WikiGenes - Universities