The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Ca2+ influx through distinct routes controls exocytosis and endocytosis at drosophila presynaptic terminals.

Endocytosis of synaptic vesicles follows exocytosis, and both processes require external Ca(2+). However, it is not known whether Ca(2+) influx through one route initiates both processes. At larval Drosophila neuromuscular junctions, we separately measured exocytosis and endocytosis using FM1-43. In a temperature-sensitive Ca(2+) channel mutant, cacophony(TS2), exocytosis induced by high K(+) decreased at nonpermissive temperatures, while endocytosis remained unchanged. In wild-type larvae, a spider toxin, PLTXII, preferentially inhibited exocytosis, whereas the Ca(2+) channel blockers flunarizine and La(3+) selectively depressed endocytosis. None of these blockers affected exocytosis or endocytosis induced by a Ca(2+) ionophore. Evoked synaptic potentials were depressed regardless of stimulus frequency in cacophony(TS2) at nonpermissive temperatures and in wild-type by PLTXII, whereas flunarizine or La(3+) gradually depressed synaptic potentials only during high-frequency stimulation, suggesting depletion of synaptic vesicles due to blockade of endocytosis. In shibire(ts1), a dynamin mutant, flunarizine or La(3+) inhibited assembly of clathrin at the plasma membrane during stimulation without affecting dynamin function.[1]

References

 
WikiGenes - Universities