The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

FSH activates phosphatidylinositol 3-kinase/protein kinase B signaling pathway in 20-day-old Sertoli cells independently of IGF-I.

The gonadotropin FSH plays a key role in the control of Sertoli cell function. The FSH molecular mechanism of action is best recognized for its stimulation of the adenylyl cyclase/cAMP pathway. However, other signaling events have also been demonstrated in Sertoli cells. We have recently presented evidence that FSH can stimulate the phosphatidylinositol 3-kinase/protein kinase B ( PI3K/PKB) pathway in 20-day-old Sertoli cells. At the same time, it was proposed that in 8-day-old Sertoli cells the effects of FSH on phosphorylated PKB (P-PKB) levels can be explained by a combination of increased secretion of endogenous IGF-I, decreased IGF-binding protein-3 (IGFBP-3) production, and a synergistic action of FSH on IGF-I-dependent PI3K activation. The aim of the present study was to determine whether the effect of FSH on 20-day-old Sertoli cells is mediated by IGF-I secretion. Twenty-day-old rat Sertoli cell cultures were used. FSH stimulation produced a time-dependent increment in P-PKB levels reaching maximal values in 60-min incubations. IGF-I stimulation was also time-dependent reaching maximal values in 15-min incubations. On the other hand, stimulation of the cultures with FSH showed time-dependent inhibition in phosphorylated mitogen-activated protein kinase (P-MAPK) levels. In sharp contrast, stimulation of the cultures with IGF-I showed time-dependent increments in P-MAPK levels reaching maximal stimulus in 15-min incubations. In order to rule out an IGF-I action on FSH stimulation of P-PKB levels, the effect of a specific IGF-I antibody on the ability of both hormones to increase P-PKB levels was evaluated. As expected, the antibody inhibited IGF-I stimulation of P-PKB levels. However, simultaneous addition of an IGF-I antibody with FSH did not modify the ability of the hormone to increase P-PKB levels. The next set of experiments intended to analyze the relevance of a PI3K/PKB pathway to two biological responses of Sertoli cells to FSH and IGF-I. The PI3K inhibitor, wortmannin, dose-dependently decreased FSH-stimulated lactate and transferrin production. On the other hand, wortmannin was not able to modify the ability of IGF-I to stimulate these metabolic events. In addition, the analysis of the participation of a MAPK pathway in IGF-I regulation of Sertoli cell biological responses showed that the MAPK kinase inhibitors, PD98059 and U0126, decreased IGF-I- stimulated transferrin secretion while not modifying IGF-I-stimulated lactate levels. In summary, results obtained so far support the hypothesis that FSH action on P-PKB levels and Sertoli cell metabolism in 20-day-old animals is not mediated by autocrine regulation of an IGF-I/ IGFBP-3 axis as previously proposed in 8-day-old Sertoli cells.[1]

References

  1. FSH activates phosphatidylinositol 3-kinase/protein kinase B signaling pathway in 20-day-old Sertoli cells independently of IGF-I. Meroni, S.B., Riera, M.F., Pellizzari, E.H., Galardo, M.N., Cigorraga, S.B. J. Endocrinol. (2004) [Pubmed]
 
WikiGenes - Universities