The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Phosphatidylinositol 3-kinase-dependent mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 and NF-kappa B signaling pathways are required for B cell antigen receptor- mediated cyclin D2 induction in mature B cells.

Phosphatidylinositol 3-kinase ( PI-3K) has been linked to promitogenic responses in splenic B cells following B cell Ag receptor (BCR) cross-linking; however identification of the signaling intermediates that link PI-3K activity to the cell cycle remains incomplete. We show that cyclin D2 induction is blocked by the PI-3K inhibitors wortmannin and LY294002, which coincides with impaired BCR-mediated mitogen-activated protein/extracellular signal-related kinase kinase (MEK)1/2 and p42/44ERK phosphorylation on activation residues. Cyclin D2 induction is virtually absent in B lymphocytes from mice deficient in the class I(A) PI-3K p85alpha regulatory subunit. In contrast to studies with PI-3K inhibitors, which inhibit all classes of PI-3Ks, the p85alpha regulatory subunit is not required for BCR- induced MEK1/2 and p42/44ERK phosphorylation, suggesting the contribution of another PI-3K family members in MEK1/2 and p42/44ERK activation. However, p85alpha(-/-) splenic B cells are defective in BCR- induced IkappaB kinase beta and IkappaBalpha phosphorylation. We demonstrate that NF-kappaB signaling is required for cyclin D2 induction via the BCR in normal B cells, implicating a possible link with the defective IkappaB kinase beta and IkappaBalpha phosphorylation in p85alpha(-/-) splenic B cells and their ability to induce cyclin D2. These results indicate that MEK1/2-p42/44ERK and NF-kappaB pathways link PI-3K activity to Ag receptor- mediated cyclin D2 induction in splenic B cells.[1]

References

 
WikiGenes - Universities