The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra.

BACKGROUND AND PURPOSE: Release of excitatory amino acids (EAA) is considered a cause of neuronal damage in ischemia. We investigated the sources and mechanisms of EAA release using microdialysis in regions of incomplete ischemia where perfusion was reduced by 50% to 80%, by applying inhibitors of volume-regulated anion channels (VRACs) and the GLT-1 glutamate transporter. METHODS: Reversible middle cerebral artery occlusion (rMCAo) was induced in anesthetized rats using the intraluminal suture technique. Microdialysate concentrations of glutamate, aspartate, and taurine were measured before, during 2 hours of rMCAo, and for 2 hours after rMCAo. Vehicle, dihydrokainate (DHK, 1 mmol/L), a GLT-1 inhibitor, or tamoxifen (50 micromol/L), a VRAC inhibitor, were administered continuously via the dialysis probes starting one hour prior to ischemia. RESULTS: During incomplete ischemia, dialysate glutamate levels averaged 1.74+/-0.31 micromol/L (SEM) in the control group (n=8), 2.08+/-0.33 micromol/L in the DHK group (n=7), and were significantly lower at 0.88+/-0.30 micromol/L in the tamoxifen group (n=9; P<0.05). As perfusion returned toward baseline levels, EAA levels declined in the vehicle and tamoxifen-treated animals but they remained elevated in the DHK-treated animals. CONCLUSIONS: In contrast to previous results in severely ischemic regions, DHK did not reduce EAA release in less severely ischemic brain, suggesting a diminished role for transporter reversal in these areas. These findings also support the hypothesis that in regions of incomplete ischemia, release of EAAs via VRACs may play a larger role than reversal of the GLT-1 transporter.[1]

References

 
WikiGenes - Universities