The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Coordination of membrane excitability through a GIRK1 signaling complex in the atria.

Control of heart rate is a complex process that integrates the function of multiple G protein-coupled receptors and ion channels. Among them, the G protein-regulated inwardly rectifying K+ (GIRK or KACh) channels of sinoatrial node and atria play a major role in beat-to-beat regulation of the heart rate. The atrial KACh channels are heterotetrameric proteins that consist of two pore-forming subunits, GIRK1 and GIRK4. Following m2-muscarinic acetylcholine receptor (M2R) stimulation, KACh channel activation is conferred by the direct binding of G protein betagamma subunits (Gbetagamma) to the channel. Here we show that atrial KACh channels are assembled in a signaling complex with Gbetagamma, G protein-coupled receptor kinase, cyclic adenosine monophosphate-dependent protein kinase, two protein phosphatases, PP1 and PP2A, receptor for activated C kinase 1, and actin. This complex would enable the KACh channels to rapidly integrate beta-adrenergic and M2R signaling in the membrane, and it provides insight into general principles governing spatial integration of different transduction pathways. Furthermore, the same complex might recruit protein kinase C ( PKC) to the KACh channel following alpha-adrenergic receptor stimulation. Our electro-physiological recordings from single atrial KACh channels revealed a potent inhibition of Gbetagamma-induced channel activity by PKC, thus validating the physiological significance of the observed complex as interconnecting site where signaling molecules congregate to execute a coordinated control of membrane excitability.[1]

References

  1. Coordination of membrane excitability through a GIRK1 signaling complex in the atria. Nikolov, E.N., Ivanova-Nikolova, T.T. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities