The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Microvascular dysfunction after transient high glucose is caused by superoxide-dependent reduction in the bioavailability of NO and BH(4).

We hypothesized that transient high-glucose concentration interferes with mediation by nitric oxide (NO) of flow-induced dilation (FID) of arterioles due to enhanced production of superoxide. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles ( approximately 130 microm) after transient high-glucose treatment (tHG; incubation with 30 mM glucose for 1 h), FID was reduced (maximum: control, 38 +/- 4%; after tHG, 17 +/- 3%), which was not further diminished by the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 18 +/- 2%). Correspondingly, an enhanced polyethylene-glycol-SOD (PEG-SOD)-sensitive superoxide production was detected after tHG in carotid arteries by dihydroethydine (DHE) staining. Presence of PEG-SOD during tHG prevented the reduction of FID (41 +/- 3%), which could be inhibited by l-NAME (20 +/- 4%). Administration of PEG-SOD after tHG did not prevent the reduction of FID (22 +/- 3%). Sepiapterin, a precursor of the NO synthase cofactor tetrahydrobiopterin (BH(4)), administered during tHG did not prevent the reduction of FID (maximum, 15 +/- 5%); however, it restored FID when administered after tHG (32 +/- 4%). Furthermore, inhibition of either glycolysis by 2-deoxyglucose or mitochondrial complex II by 2-thenoyltrifluoroacetone reduced the tHG-induced DHE-detectable enhanced superoxide production in carotid arteries and prevented FID reduction in arterioles (39 +/- 5 and 35 +/- 2%). Collectively, these findings suggest that in skeletal muscle arterioles, a transient elevation of glucose via its increased metabolism, elicits enhanced production of superoxide, which decreases the bioavailability of NO and the level of the NOS cofactor BH(4), resulting in a reduction of FID mediated by NO.[1]

References

 
WikiGenes - Universities