The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

sepiapterin     2-amino-6-[(2S)-2- hydroxypropanoyl]-7,8...

Synonyms: Sepiapterine, L-Sepiapterin, Lopac-S-154, S154_ALDRICH, SureCN258399, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of sepiapterin

 

High impact information on sepiapterin

 

Chemical compound and disease context of sepiapterin

 

Biological context of sepiapterin

  • Increasing the intracellular BH4 levels by sepiapterin supplementation restored the nNOS activity, inhibited superoxide formation, increased proteasome activity, decreased protein ubiquitination, and attenuated apoptosis in MPP+-treated cells [13].
  • However, further cell cycle analysis shows that the inhibition of cell differentiation by 7,8-BH2 and sepiapterin may not be due to the reversal of cell proliferation [14].
  • The N-terminal amino acid sequence was revealed as Met-Lys-His-Ile-Leu-Leu-Ile-Thr-Gly-Ala-Xaa-Lys - Lys - Ile - Xaa - Arg - Ala - Ile - Ala - Leu - Glu - Xaa - Ala - Arg - Xaa-Xaa-Xaa-His-His-His-, which shared relatively high sequence similarity with other sepiapterin reductases [3].
  • These results indicate that sepiapterin improves endothelial dysfunction in SMA from db/db mice by reducing oxidative stress [5].
  • Furthermore, the addition of BH(4) or sepiapterin to DAHP-pretreated V146 and V1-69 cells restored cell viability [15].
 

Anatomical context of sepiapterin

 

Associations of sepiapterin with other chemical compounds

 

Gene context of sepiapterin

  • Supplementing HMC with the BH4 donor sepiapterin potentiated IL-1beta/TNF-alpha-induced COX-2 expression by approximately 2-fold [24].
  • In contrast, the NOS inhibitor L-NAME and the soluble guanylate cyclase inhibitor ODQ did not block sepiapterin amplification of COX-2 expression [24].
  • Pretreatment of cells with sepiapterin to promote BH(4) biosynthesis or cell-permeable iron chelator and TfR antibody to prevent iron-catalyzed BH(4) decomposition inhibited MPP(+) cytotoxicity [25].
  • Treatment with the GTPCH inhibitor 2,4-diamino-6-hydroxypyrimidine prevented IL-1 beta-induced NOS activity in untreated or FSH-stimulated cells, and this inhibition was completely reversed by sepiapterin, a substrate for BH4 biosynthesis, via an alternative pterin salvage pathway present in many cell types [26].
  • We isolated the genes encoding yeast YIR036C protein and gerbil sepiapterin reductase, and both recombinant proteins also reduced benzil to (S)-benzoin in vitro [27].
 

Analytical, diagnostic and therapeutic context of sepiapterin

References

  1. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Tiefenbacher, C.P., Chilian, W.M., Mitchell, M., DeFily, D.V. Circulation (1996) [Pubmed]
  2. Tetrahydrobiopterin is released from and causes preferential death of catecholaminergic cells by oxidative stress. Choi, H.J., Jang, Y.J., Kim, H.J., Hwang, O. Mol. Pharmacol. (2000) [Pubmed]
  3. Sepiapterin reductase producing L-threo-dihydrobiopterin from Chlorobium tepidum. Cho, S.H., Na, J.U., Youn, H., Hwang, C.S., Lee, C.H., Kang, S.O. Biochem. J. (1999) [Pubmed]
  4. Production of sepiapterin in Escherichia coli by coexpression of cyanobacterial GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase. Woo, H.J., Kang, J.Y., Choi, Y.K., Park, Y.S. Appl. Environ. Microbiol. (2002) [Pubmed]
  5. Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Pannirselvam, M., Simon, V., Verma, S., Anderson, T., Triggle, C.R. Br. J. Pharmacol. (2003) [Pubmed]
  6. Mechanism of suppression in Drosophila: evidence for a macromolecule produced by the su(s)+ locus that inhibits sepiapterin synthase. Jacobson, K.B., Yim, J.J., Grell, E.H., Wobbe, C.R. Cell (1982) [Pubmed]
  7. Mechanism of suppression in Drosophila: control of sepiapterin synthase at the purple locus. Yim, J.J., Grell, E.H., Jacobson, K.B. Science (1977) [Pubmed]
  8. Biosynthesis of tetrahydrobiopterin by de novo and salvage pathways in adrenal medulla extracts, mammalian cell cultures, and rat brain in vivo. Nichol, C.A., Lee, C.L., Edelstein, M.P., Chao, J.Y., Duch, D.S. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  9. Escherichia coli 6-pyruvoyltetrahydropterin synthase ortholog encoded by ygcM has a new catalytic activity for conversion of sepiapterin to 7,8-dihydropterin. Woo, H.J., Hwang, Y.K., Kim, Y.J., Kang, J.Y., Choi, Y.K., Kim, C.G., Park, Y.S. FEBS Lett. (2002) [Pubmed]
  10. Involvement of pteridines in the body coloration of the isopod Armadillidium vulgare. Negishi, S., Hasegawa, Y., Katoh, S. Pigment Cell Res. (1998) [Pubmed]
  11. Isolation and expression of a Bacillus cereus gene encoding benzil reductase. Maruyama, R., Nishizawa, M., Itoi, Y., Ito, S., Inoue, M. Biotechnol. Bioeng. (2001) [Pubmed]
  12. Catabolic conversion of sepiapterin to 6-(1-carboxyethoxy)pterin by Bacillus subtilis. Matsuura, S., Sugimoto, T., Kitayama, C., Tsusue, M. J. Biochem. (1978) [Pubmed]
  13. Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide, and proteasome activation. Shang, T., Kotamraju, S., Zhao, H., Kalivendi, S.V., Hillard, C.J., Kalyanaraman, B. Free Radic. Biol. Med. (2005) [Pubmed]
  14. Effects of depletion of intracellular tetrahydrobiopterin in murine erythroleukemia cells. Zhuo, S., Fan, S., Kaufman, S. Exp. Cell Res. (1996) [Pubmed]
  15. Overexpression of V-1 prevents nitric oxide-induced cell death: involvement of enhanced tetrahydrobiopterin biosynthesis. Yuyama, K., Yamamoto, H., Nakamura, K., Nishizaki, I., Yamakuni, T., Song, S.Y., Sora, I., Nagatsu, T., Yamamoto, T. J. Neurosci. Res. (2003) [Pubmed]
  16. Regulation of guanosine triphosphate cyclohydrolase and tetrahydrobiopterin levels and the role of the cofactor in tyrosine hydroxylation in primary cultures of adrenomedullary chromaffin cells. Abou-Donia, M.M., Wilson, S.P., Zimmerman, T.P., Nichol, C.A., Viveros, O.H. J. Neurochem. (1986) [Pubmed]
  17. Nitric oxide-mediated antiplasmodial activity in human and murine hepatocytes induced by gamma interferon and the parasite itself: enhancement by exogenous tetrahydrobiopterin. Mellouk, S., Hoffman, S.L., Liu, Z.Z., de la Vega, P., Billiar, T.R., Nussler, A.K. Infect. Immun. (1994) [Pubmed]
  18. Regulation of the L-arginine-dependent and tetrahydrobiopterin-dependent biosynthesis of nitric oxide in murine macrophages. Schoedon, G., Schneemann, M., Hofer, S., Guerrero, L., Blau, N., Schaffner, A. Eur. J. Biochem. (1993) [Pubmed]
  19. Sepiapterin reductase in cultured human cells. Ferré, J., Naylor, E.W. Biochem. Biophys. Res. Commun. (1987) [Pubmed]
  20. Structure of Chlorobium tepidum sepiapterin reductase complex reveals the novel substrate binding mode for stereospecific production of L-threo-tetrahydrobiopterin. Supangat, S., Seo, K.H., Choi, Y.K., Park, Y.S., Son, D., Han, C.D., Lee, K.H. J. Biol. Chem. (2006) [Pubmed]
  21. Biosynthesis of biopterin by rat brain. Kapatos, G., Katoh, S., Kaufman, S. J. Neurochem. (1982) [Pubmed]
  22. Regulation of inducible nitric oxide production by cytokines in human thyrocytes in culture. Kasai, K., Hattori, Y., Nakanishi, N., Manaka, K., Banba, N., Motohashi, S., Shimoda, S. Endocrinology (1995) [Pubmed]
  23. Dopamine-releasing action of 6R-L-erythro-tetrahydrobiopterin: analysis of its action site using sepiapterin. Koshimura, K., Miwa, S., Watanabe, Y. J. Neurochem. (1994) [Pubmed]
  24. Tetrahydrobiopterin modulates cyclooxygenase-2 expression in human mesangial cells. Pérez-Sala, D., Díaz-Cazorla, M., Ros, J., Jiménez, W., Lamas, S. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  25. 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. Shang, T., Kotamraju, S., Kalivendi, S.V., Hillard, C.J., Kalyanaraman, B. J. Biol. Chem. (2004) [Pubmed]
  26. Induction of guanosine triphosphate-cyclohydrolase by follicle-stimulating hormone enhances interleukin-1 beta-stimulated nitric oxide synthase activity in granulosa cells. Tabraue, C., Diaz Peñate, R., Gallardo, G., Hernandez, I., Quintana, J., Lopez Blanco, F., Gonzalez Reyes, J., Fanjul, L.F., Ruiz de Galarreta, C.M. Endocrinology (1997) [Pubmed]
  27. The enzymes with benzil reductase activity conserved from bacteria to mammals. Maruyama, R., Nishizawa, M., Itoi, Y., Ito, S., Inoue, M. J. Biotechnol. (2002) [Pubmed]
  28. Analysis of xanthophore and pterinosome biogenesis in zebrafish using methylene blue and pteridine autofluorescence. Le Guyader, S., Jesuthasan, S. Pigment Cell Res. (2002) [Pubmed]
  29. Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in atherosclerosis. Tiefenbacher, C.P., Bleeke, T., Vahl, C., Amann, K., Vogt, A., Kübler, W. Circulation (2000) [Pubmed]
 
WikiGenes - Universities