The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The methylester of gamma-butyrobetaine, but not gamma-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation.

Gamma-butyrobetaine (GBB) is known mostly as a bio-precursor of carnitine, a key molecule in the regulation of myocardial energy metabolism. The metabolites of carnitine and GBB were investigated for acetylcholine-like activity decades ago. The present study shows that the methylester of GBB (GBB-ME) exerts its biological activity by binding to muscarinic acetylcholine receptors. GBB-ME dose-dependently decreased the blood pressure in anaesthetised rats and also produced endothelium-dependent vasodilation in the isolated guinea-pig heart. The biological effects of GBB-ME were inhibited partially by the NOS inhibitor N(omega)-nitro-L-arginine methylester (L-NAME) and abolished by the acetylcholine receptor antagonist atropine, thus supporting the hypothesis that GBB-ME acts as muscarinic agonist. Moreover, we have shown here for the first time that GBB-ME binds directly to transfected human muscarinic (m) acetylcholine receptors, the potency order being m2>m5> or =m4> or =m1>m3. GBB itself showed neither biological activity nor significant affinity for the m1-5 receptors. We conclude that GBB-ME, but not the parent GBB, possesses acetylcholine-like activity in vivo and in vitro.[1]

References

  1. The methylester of gamma-butyrobetaine, but not gamma-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation. Dambrova, M., Chlopicki, S., Liepinsh, E., Kirjanova, O., Gorshkova, O., Kozlovski, V.I., Uhlen, S., Liepina, I., Petrovska, R., Kalvinsh, I. Naunyn Schmiedebergs Arch. Pharmacol. (2004) [Pubmed]
 
WikiGenes - Universities