The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Conserved glycines in the C terminus of MinC proteins are implicated in their functionality as cell division inhibitors.

Alignment of 36 MinC sequences revealed four completely conserved C-terminal glycines. As MinC inhibits cytokinesis in Neisseria gonorrhoeae and Escherichia coli, the functional importance of these glycines in N. gonorrhoeae MinC (MinC(Ng)) and E. coli MinC (MinC(Ec)) was investigated through amino acid substitution by using site-directed mutagenesis. Each mutant was evaluated for its ability to arrest cell division and to interact with itself and MinD. In contrast to overexpression of wild-type MinC, overexpression of mutant proteins in E. coli did not induce filamentation, indicating that they lost functionality. Yeast two-hybrid studies showed that MinC(Ec) interacts with itself and MinD(Ec); however, no interactions involving MinC(Ng) were detected. Therefore, a recombinant MinC protein, with the N terminus of MinC(Ec) and the C terminus of MinC(Ng), was designed to test for a MinC(Ng)-MinD(Ng) interaction. Each MinC mutant interacted with either MinC or MinD but not both, indicating the specificity of glycine residues for particular protein-protein interactions. Each glycine was mapped on the C-terminal surfaces (A, B, and C) of the solved Thermotoga maritima MinC structure. We found that MinC(Ec) G161, residing in close proximity to the A surface, is involved in homodimerization, which is essential for MinC function. Glycines corresponding to MinC(Ec) G135, G154, and G171, located within or adjacent to the B-C surface junction, are critical for MinC-MinD interactions. Circular dichroism revealed no gross structural perturbations of the mutant proteins, although the contribution of glycines to protein flexibility and stability cannot be discounted. Using molecular modeling, we propose that exposed conserved MinC glycines interact with exposed residues of the alpha-7 helix of MinD.[1]

References

  1. Conserved glycines in the C terminus of MinC proteins are implicated in their functionality as cell division inhibitors. Ramirez-Arcos, S., Greco, V., Douglas, H., Tessier, D., Fan, D., Szeto, J., Wang, J., Dillon, J.R. J. Bacteriol. (2004) [Pubmed]
 
WikiGenes - Universities