Characterization of striatal cultures with the effect of QUIN and NMDA.
The degeneration of selective and specific types of neurons is a characteristic feature in several neurodegenerative disorders. N-methyl-D-aspartate receptor ( NMDAR) agonist quinolinic acid (QUIN)- induced excitotoxicity has been implicated in neurodegeneration and mimics Huntington's disease ( HD) by the loss of medium-sized spiny projection neurons while sparing medium-sized aspiny interneurons in the striatum. Previous work suggests that somatostatin/neuropeptide Y (SST/NPY)-containing neurons are selectively preserved in HD due to the presence of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and the lack of NMDAR. In the present study, the distribution of somatostatin (SST), neuropeptide Y ( NPY), nitric oxide synthase (nNOS), NMDA receptor type-1 (NR1), and the enzyme NADPH-d was determined in cultured striatal neurons with the effect of QUIN and N-methyl-D-aspartate (NMDA). SST/ NPY-positive neurons, which constitute approximately 8-10% of striatal neurons, are selectively spared in QUIN/NMDA-treated cultures. nNOS and NADPH-d-positive neurons, comprising 3.8% of the neuronal population, also exhibit selective resistance to excitotoxicity. Most NR1-positive neurons, which constitute >80% of the total neuronal population, are lost in majority upon treatment with QUIN and NMDA. SST and NADPH-d-positive neurons also colocalize with Cu/Zn superoxide dismutase (Cu/Zn SOD). In conclusion, our results thus demonstrate that SST/ NPY/nNOS-positive neurons are selectively spared in NMDA agonist-induced excitotoxicity, which could be attributed to the presence of Cu/Zn SOD and NADPH-d in addition to the low abundance of NMDAR on these neurons.[1]References
- Characterization of striatal cultures with the effect of QUIN and NMDA. Kumar, U. Neurosci. Res. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg