The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Diphenylamine-2-carboxylic acid potentiates the cyclic nucleotides-mediated relaxation of porcine coronary artery: possible involvement of the inhibitory effect on the efflux of cyclic nucleotides.

We examined the effect of diphenylamine-2-carboxylic acid (DPC), which has been shown to inhibit the efflux of cyclic nucleotides from vascular smooth-muscle cells, on the relaxant responses to forskolin, an adenylyl cyclase activator, and sodium nitroprusside (SNP), an NO donor, in the porcine coronary arteries. DPC (100 microM), which caused only a minor effect by itself, significantly augmented the relaxant responses to forskolin and SNP in the preparations contracted with 30 mM KCl. On the other hand, DPC did not affect the relaxant responses to nifedipine and cromakalim. Forskolin (10 microM) induced an accumulation of adenosine 3', 5'-cyclic monophosphate (cAMP) in the porcine coronary arteries, which was associated with an accumulation of cAMP in the incubation media. The intracellular cAMP response to forskolin was enhanced by DPC, whereas the extracellular cAMP response was reduced. The effects of SNP on guanosine 3', 5'-cyclic monophosphate (cGMP) accumulation were examined in the presence of 3-isobutyl-l-methylxanthine (500 microM) because cGMP was not found in the tissue and the incubation medium in the absence of the phosphodiesterase inhibitor. DPC significantly decreased the SNP-induced release of cGMP to the extracellular space, whereas it did not affect the accumulation of cGMP in the tissue. These results suggest that DPC inhibits the efflux of cyclic nucleotides. It is likely that the inhibitory effect of DPC on cAMP efflux contributes to the enhancement of tissue cAMP accumulation and relaxation produced by the agents that activate adenylyl cyclase. Thus, the transport system(s) of cyclic nucleotides may be a novel target for the prevention and/or treatment of various cardiovascular diseases.[1]


WikiGenes - Universities