The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Membrane topology of system xc- light subunit reveals a re-entrant loop with substrate-restricted accessibility.

Heteromeric amino acid transporters are composed of a heavy and a light subunit linked by a disulfide bridge. 4F2hc/xCT elicits sodium-independent exchange of anionic L-cysteine and L-glutamate (system x(c)(-)). Based on the accessibility of single cysteines to 3-(N-maleimidylpropionyl)biocytin, we propose a topological model for xCT of 12 transmembrane domains with the N and C termini located inside the cell. This location of N and C termini was confirmed by immunofluorescence. Studies of biotinylation and accessibility to sulfhydryl reagents revealed a re-entrant loop within intracellular loops 2 and 3. Residues His(110) and Thr(112), facing outside, are located at the apex of the re-entrant loop. Biotinylation of H110C was blocked by xCT substrates, by the nontransportable inhibitor (S)-4-carboxyphenylglycine, and by the impermeable reagent (2-sulfonatoethyl) methanethiosulfonate, which produced an inactivation of H110C that was protected by L-glutamate and L-cysteine with an IC(50) similar to the K(m). Protection was temperatureindependent. The data indicate that His(110) may lie close to the substrate binding/permeation pathway of xCT. The membrane topology of xCT could serve as a model for other light subunits of heteromeric amino acid transporters.[1]

References

  1. Membrane topology of system xc- light subunit reveals a re-entrant loop with substrate-restricted accessibility. Gasol, E., Jiménez-Vidal, M., Chillarón, J., Zorzano, A., Palacín, M. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities