Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans.
The mammalian intestinal peptide transporter PEPT1 mediates the uptake of di- and tripeptides from the gut lumen into intestinal epithelial cells and acts in parallel with amino acid transporters. Here we address the importance of the PEPT1 orthologue PEP-2 for the assimilation of dietary protein and for overall protein nutrition in Caenorhabditis elegans. pep-2 is expressed specifically along the apical membrane of the intestinal cells, and in pep-2 deletion mutant animals, uptake of intact peptides from the gut lumen is abolished. The consequences are a severely retarded development, reduced progeny and body size, and increased stress tolerance. We show here that pep-2 cross-talks with both the C. elegans target of rapamycin (TOR) and the DAF-2/insulin-signaling pathways. The pep-2 mutant enhances the developmental and longevity phenotypes of daf-2, resulting, among other effects, in a pronounced increase in adult life span. Moreover, all aspects of a weak let-363/TOR RNA interference phenotype are intensified by pep-2 deletion, indicating that pep-2 function upstream of TOR-mediated nutrient sensing. Our findings provide evidence for a predominant role of the intestinal peptide transporter for the delivery of bulk quantities of amino acids for growth and development, which consequently affects signaling pathways that regulate metabolism and aging.[1]References
- Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. Meissner, B., Boll, M., Daniel, H., Baumeister, R. J. Biol. Chem. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg