The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping.

Pseudomonas aeruginosa has a wide ecological distribution that includes natural habitats and clinical settings. To analyze the population structure and distribution of P. aeruginosa, a collection of 111 isolates of diverse habitats and geographical origin, most of which contained a genome with a different SpeI macrorestriction profile, was typed by restriction fragment length polymorphism based on 14 single nucleotide polymorphisms (SNPs) located at seven conserved loci of the core genome (oriC, oprL, fliC, alkB2, citS, oprI, and ampC). The combination of these SNPs plus the type of fliC present (a or b) allowed the assignment of a genetic fingerprint to each strain, thus providing a simple tool for the discrimination of P. aeruginosa strains. Thirteen of the 91 identified SNP genotypes were found in two or more strains. In several cases, strains sharing their SNP genotype had different SpeI macrorestriction profiles. The highly virulent CHA strain shared its SNP genotype with other strains that had different SpeI genotypes and which had been isolated from nonclinical habitats. The reference strain PAO1 also shared its SNP genotype with other strains that had different SpeI genotypes. The P. aeruginosa chromosome contains a conserved core genome and variable amounts of accessory DNA segments (genomic islands and islets) that can be horizontally transferred among strains. The fact that some SNP genotypes were overrepresented in the P. aeruginosa population studied and that several strains sharing an SNP genotype had different SpeI macrorestriction profiles supports the idea that changes occur at a higher rate in the accessory DNA segments than in the conserved core genome.[1]

References

  1. Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. Morales, G., Wiehlmann, L., Gudowius, P., van Delden, C., Tümmler, B., Martínez, J.L., Rojo, F. J. Bacteriol. (2004) [Pubmed]
 
WikiGenes - Universities