DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila.
Both in Drosophila and vertebrate epithelial cells, the establishment of apicobasal polarity requires the apically localized, membrane-associated Par-3-Par-6-aPKC protein complex. In Drosophila, this complex colocalizes with the Crumbs-Stardust (Sdt)-Pals1- associated TJ protein (Patj) complex. Genetic and molecular analyses suggest a functional relationship between them. We show, by overexpression of a kinase-dead Drosophila atypical PKC (DaPKC), the requirement for the kinase activity of DaPKC to maintain the position of apical determinants and to restrict the localization of basolateral ones. We demonstrate a novel physical interaction between the apical complexes, via direct binding of DaPKC to both Crb and Patj, and identify Crumbs as a phosphorylation target of DaPKC. This phosphorylation of Crumbs is functionally significant. Thus, a nonphosphorylatable Crumbs protein behaves in vivo as a dominant negative. Moreover, the phenotypic effect of overexpressing wild-type Crumbs is suppressed by reducing DaPKC activity. These results provide a mechanistic framework for the functional interaction between the Par-3-Par-6-aPKC and Crumbs-Sdt-Patj complexes based in the posttranslational modification of Crb by DaPKC.[1]References
- DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. Sotillos, S., Díaz-Meco, M.T., Caminero, E., Moscat, J., Campuzano, S. J. Cell Biol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg