The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of transferrin receptor 2 protein levels by transferrin.

Transferrin receptor 2 ( TfR2) plays a critical role in iron homeostasis because patients carrying disabling mutations in the TFR2 gene suffer from hemochromatosis. In this study, iron-responsive regulation of TfR2 at the protein level was examined in vitro and in vivo. HepG2 cell TfR2 protein levels were up-regulated after exposure to holotransferrin (holoTf) in a time- and dose-responsive manner. ApoTf or high-iron treatment with non-Tf-bound iron failed to elicit similar effects, suggesting that TfR2 regulation reflects interactions of the iron-bound ligand. Hepatic TfR2 protein levels also reflected an adaptive response to changing iron status in vivo. Liver TfR2 protein levels were down- and up-regulated in rats fed an iron-deficient and a high-iron diet, respectively. TfR2 was also up-regulated in Hfe(-/-) mice, an animal model that displays liver iron loading. In contrast, TfR2 levels were reduced in hypotransferrinemic mice despite liver iron overload, supporting the idea that regulation of the receptor is dependent on Tf. This idea is confirmed by up-regulation of TfR2 in beta-thalassemic mice, which, like hypotransferrinemic mice, are anemic and incur iron loading, but have functional Tf. Based on these combined results, we hypothesize that TfR2 acts as a sensor of iron status such that receptor levels reflect Tf saturation.[1]


  1. Regulation of transferrin receptor 2 protein levels by transferrin. Robb, A., Wessling-Resnick, M. Blood (2004) [Pubmed]
WikiGenes - Universities