The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A hepatitis C virus-encoded, nonstructural protein (NS3) triggers dysfunction and apoptosis in lymphocytes: role of NADPH oxidase-derived oxygen radicals.

The persistent infection caused by hepatitis C virus (HCV) is presumably explained by a deficient immune response to the infection, but the basis for the inefficiency of immune-mediated virus eradication is not known in detail. This study addresses mechanisms of relevance to dysfunction of cytotoxic lymphocytes in HCV infection, with a focus on the role of phagocyte-derived oxygen radicals. We show that NS3, a nonstructural, HCV-encoded protein, induces a prolonged release of oxygen radicals from mononuclear and polymorphnuclear phagocytes by activating a key enzyme in radical formation, the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The NS3-activated phagocytes, in turn, induced dysfunction and/or apoptosis in three major subsets of lymphocytes of relevance to defense against HCV infection: CD3+/56- T cells, CD3-/56+ natural killer (NK) cells, and CD3+/56+ NKT cells. Two inhibitors of the NADPH oxidase, histamine and diphenylene iodonium, suppressed the NS3-induced oxygen radical production and efficiently protected lymphocytes against NS3-induced apoptosis and dysfunction. In conclusion, we propose that NS3, by triggering oxygen radical formation in phagocytes, may contribute to the dysfunction of antiviral lymphocytes in HCV-infected liver tissue and that strategies to circumvent oxidative stress may be useful in preventing HCV-associated carcinogenesis and facilitating lymphocyte-mediated clearance of infected cells.[1]

References

 
WikiGenes - Universities