The ATM-SMC1 pathway is essential for activation of the chromium[VI]- induced S-phase checkpoint.
Hexavalent chromium (Cr[VI]) is a common industrial waste product, an environmental pollutant, and a recognized human carcinogen. Following cellular uptake, Cr[VI] can cause DNA damage, however, the mechanisms by which mammalian cells respond to Cr-induced DNA damage remain to be elucidated. Using single cell gel electrophoresis (e.g., Comet Assay) and immunofluoresence microscopy to detect the presence of gamma-H2AX foci, we find that Cr[VI] induces DNA double-strand breaks similar to ionizing radiation (IR). We also demonstrated that ataxia telangiectasia mutated ( ATM) is activated in response to Cr[VI] and exposure to Cr[VI] triggers a dose and ATM-dependent S-phase arrest. Further, we document that ATM is required for phosphorylation of the structural maintenance of chromosome protein 1 (SMC1). Finally, we find that ATM-dependent phosphorylation of SMC1 is required to facilitate S-phase cell-cycle arrest in response to Cr[VI] exposure. Collectively, these results indicate that the ATM-SMC1 pathway plays a critical role in cellular response to Cr[VI].[1]References
- The ATM-SMC1 pathway is essential for activation of the chromium[VI]-induced S-phase checkpoint. Wakeman, T.P., Kim, W.J., Callens, S., Chiu, A., Brown, K.D., Xu, B. Mutat. Res. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg