The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Development and automation of a 384-well cell fusion assay to identify inhibitors of CCR5/CD4-mediated HIV virus entry.

This article describes the automation of an in vitro cell-based fusion assay for the identification of novel inhibitors of receptor mediated HIV-1 entry. The assay utilises two stable cell lines: one expressing CD4, CCR5 and an LTR-promoter/beta-galactosidase reporter construct, and the other expressing gp160 and tat. Accumulation of beta-galactosidase can only occur following fusion of these two cell lines via the gp160 and receptor mediators, as this event facilitates the transfer of the tat transcription factor between the two cell types. Although similar cell fusion systems have been described previously, they have not met the requirements for HTS due to complexity, throughput and reagent cost. The assay described in this article provides significant advantage, as (a) no transfection/infection events are required prior to the assay, reducing the potential for variability, (b) cells are mixed in solution, enhancing fusion efficiency compared to adherent cells, (c) miniaturization to low volume enables screening in 384-well plates; and (d) online cell dispensing facilitates automated screening. This assay has been employed to screen approximately 650,000 compounds in a singleton format. The data demonstrate that the assay is robust, with a Z' consistently above 0.6, which compares favourably with less complex biochemical assays.[1]


  1. Development and automation of a 384-well cell fusion assay to identify inhibitors of CCR5/CD4-mediated HIV virus entry. Bradley, J., Gill, J., Bertelli, F., Letafat, S., Corbau, R., Hayter, P., Harrison, P., Tee, A., Keighley, W., Perros, M., Ciaramella, G., Sewing, A., Williams, C. Journal of biomolecular screening : the official journal of the Society for Biomolecular Screening. (2004) [Pubmed]
WikiGenes - Universities