The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cytoplasmic localization during testicular biogenesis of the murine mRNA for Spam1 (PH-20), a protein involved in acrosomal exocytosis.

The Sperm Adhesion Molecule1 (SPAM1) is the most widely conserved sperm antigen with important roles in mammalian fertilization. Light and electron microscopy were used to localize, by in situ hybridization, the cellular and subcellular sites of Spam1 mRNA in the murine testis. Transcripts were first detected in step 3 round spermatids, gradually increased until step 8 and abruptly decreased between steps 9-11. They were predominantly localized near the ER and were not dispersed throughout the cytoplasm. Immunohistochemistry revealed that Spam1 is present on both the head and tail of sperm in the seminiferous tubules, and provided support for transcriptional regulation of its transcript. Immunocytochemistry confirmed the location of Spam1 on the tail of testicular sperm and demonstrated that it is localized to both the principal piece and the midpiece. Spam1 on epididymal sperm is localized to the midpiece of the tail and changes from a uniform distribution on the head in the caput to a regionalized pattern, first on the posterior and then on the anterior head, in caudal sperm. Spam1 on the surface of caudal sperm was shown to mediate the increase in acrosome reactions induced by the synergistic effects of HA and progesterone, as confirmed in sperm from the Rb(6.16) translocation-bearing mice which are Spam1 mutants. The similar response of human and mouse sperm to these agonists of the acrosome reaction, underscores the usefulness of the mouse as a model to study physiological aspects of SPAM1 in humans where, unlike the mouse, it is the only sperm hyaluronidase.[1]


  1. Cytoplasmic localization during testicular biogenesis of the murine mRNA for Spam1 (PH-20), a protein involved in acrosomal exocytosis. Morales, C.R., Badran, H., El-Alfy, M., Men, H., Zhang, H., Martin-DeLeon, P.A. Mol. Reprod. Dev. (2004) [Pubmed]
WikiGenes - Universities