The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizol) microinjections into the periaqueductal gray matter of rats.

The analgesic effect of non-steroidal anti-inflammatory drugs (NSAIDs) is partly due to an action upon the periaqueductal gray matter (PAG), which triggers the descending pain control system and thus inhibits nociceptive transmission. This action of NSAIDs engages endogenous opioids at the PAG, the nucleus raphe magnus and the spinal cord. Repeated administration of NSAIDs such as dipyrone (metamizol) and acetylsalicylate thus induces tolerance to these compounds and cross-tolerance to morphine. Since cholecystokinin plays a key role in opioid tolerance, the present study in rats investigated whether PAG cholecystokinin is also responsible for tolerance to PAG-microinjected dipyrone. Microinjection of cholecystokinin (1 ng/0.5 microl) into PAG blocked the antinociceptive effect of a subsequent microinjection of dipyrone (150 microg/0.5 microl) into the same site, as evaluated by the tail flick and hot plate tests. Microinjection of proglumide (0.4 microg/0.5 microl), a non-selective cholecystokinin antagonist, into PAG prevented the development of tolerance to subsequent microinjections of dipyrone, as well as cross-tolerance to microinjection of morphine (5 microg/0.5 microl) into the same site. In rats tolerant to PAG dipyrone, a PAG microinjection of proglumide restored the antinociceptive effect of a subsequent microinjection of dipyrone or morphine. These results suggest that PAG-microinjected dipyrone triggers and/or potentiates local opioidergic circuits leading to descending inhibition of nociception, on the one hand, and to a local antiopioid action by cholecystokinin, on the other. Reiteration of these events would then result in an enhancement of cholecystokinin's antiopioid action and thus tolerance to opioids and dipyrone in the PAG.[1]

References

 
WikiGenes - Universities