The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Periaqueductal Gray

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Periaqueductal Gray


Psychiatry related information on Periaqueductal Gray


High impact information on Periaqueductal Gray


Chemical compound and disease context of Periaqueductal Gray


Biological context of Periaqueductal Gray


Anatomical context of Periaqueductal Gray


Associations of Periaqueductal Gray with chemical compounds


Gene context of Periaqueductal Gray


Analytical, diagnostic and therapeutic context of Periaqueductal Gray


  1. Responses of primate spinomesencephalic tract cells to intradermal capsaicin. Dougherty, P.M., Schwartz, A., Lenz, F.A. Neuroscience (1999) [Pubmed]
  2. Effects of lordosis-relevant neuropeptides on midbrain periaqueductal gray neuronal activity in vitro. Ogawa, S., Kow, L.M., Pfaff, D.W. Peptides (1992) [Pubmed]
  3. Cerebral sites of central action of dermorphin on intestinal motility in the rat. Parolaro, D., Sala, M., Crema, G., Giagnoni, G., Gori, E. Peptides (1985) [Pubmed]
  4. Involvement of opioid receptors in N-methyl-D-aspartate-induced arterial hypertension in periaqueductal gray matter. Maione, S., Leyva, J., Pallotta, M., Berrino, L., De Novellis, V., Rossi, F. Naunyn Schmiedebergs Arch. Pharmacol. (1995) [Pubmed]
  5. Structure-antinociceptive activity of neurotensin and some novel analogues in the periaqueductal gray region of the brainstem. al-Rodhan, N.R., Richelson, E., Gilbert, J.A., McCormick, D.J., Kanba, K.S., Pfenning, M.A., Nelson, A., Larson, E.W., Yaksh, T.L. Brain Res. (1991) [Pubmed]
  6. Endogenous pain control mechanisms: review and hypothesis. Basbaum, A.I., Fields, H.L. Ann. Neurol. (1978) [Pubmed]
  7. Benzodiazepine receptor and serotonin 2A receptor modulate the aversive-like effects of nitric oxide in the dorsolateral periaqueductal gray of rats. Moreira, F.A., Guimarães, F.S. Psychopharmacology (Berl.) (2004) [Pubmed]
  8. Examination of spinal monoamine receptors through which brainstem opiate-sensitive systems act in the rat. Jensen, T.S., Yaksh, T.L. Brain Res. (1986) [Pubmed]
  9. Approach responses for mesencephalic central gray stimulation are facilitated by D-amphetamine or food deprivation. Cazala, P. Neurosci. Lett. (1982) [Pubmed]
  10. Effects of calcitonin injected into various brain areas on pain threshold and Ca2+ in rats. Zhao, X.P., Wang, S., Xia, Y.H. Zhongguo yao li xue bao = Acta pharmacologica Sinica. (1996) [Pubmed]
  11. Antibodies to cerebroside sulfate inhibit the effects of morphine and beta-endorphin. Craves, F.B., Zalc, B., Leybin, L., Baumann, N., Loh, H.H. Science (1980) [Pubmed]
  12. Central nervous system action of peptides to influence gastrointestinal motor function. Taché, Y., Garrick, T., Raybould, H. Gastroenterology (1990) [Pubmed]
  13. beta-Arrestin2, interacting with phosphodiesterase 4, regulates synaptic release probability and presynaptic inhibition by opioids. Bradaïa, A., Berton, F., Ferrari, S., Lüscher, C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  14. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Zirlinger, M., Kreiman, G., Anderson, D.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  15. Pain modulation by release of the endogenous cannabinoid anandamide. Walker, J.M., Huang, S.M., Strangman, N.M., Tsou, K., Sañudo-Peña, M.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Jensen, T.S., Yaksh, T.L. Brain Res. (1984) [Pubmed]
  17. Modulation of lordosis behaviour in the female rat by corticotropin releasing factor, beta-endorphin and gonadotropin releasing hormone in the mesencephalic central gray. Sirinathsinghji, D.J. Brain Res. (1985) [Pubmed]
  18. Effects of intra-hippocampal injection of interleukin-2 on pain threshold and formaldehyde-induced substance P-like immunoreactivity in periaqueductal gray and spinal cord. Wu, X., Li, H.D., Li, X.C., Ruan, H.Z., Wang, J. Zhongguo yao li xue bao = Acta pharmacologica Sinica. (1999) [Pubmed]
  19. Autoradiographic comparison of the distribution of the neutral endopeptidase "enkephalinase" and of mu and delta opioid receptors in rat brain. Waksman, G., Hamel, E., Fournié-Zaluski, M.C., Roques, B.P. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  20. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study. Semenenko, F.M., Lumb, B.M. Neuroscience (1999) [Pubmed]
  21. The effects of diphenhydramine and SR142948A on periaqueductal gray neurons and on the interactions between the medial preoptic nucleus and the periaqueductal gray. Kreitel, K.D., Swisher, C.B., Behbehani, M.M. Neuroscience (2002) [Pubmed]
  22. Lidocaine blockade of amygdala output in fear-conditioned rats reduces Fos expression in the ventrolateral periaqueductal gray. Carrive, P., Lee, J., Su, A. Neuroscience (2000) [Pubmed]
  23. Serotonin in the dorsal periaqueductal gray modulates inhibitory avoidance and one-way escape behaviors in the elevated T-maze. Zanoveli, J.M., Nogueira, R.L., Zangrossi, H. Eur. J. Pharmacol. (2003) [Pubmed]
  24. Visualization of opiate receptor upregulation by light microscopy autoradiography. Tempel, A., Gardner, E.L., Zukin, R.S. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  25. A cholecystokinin-mediated pathway to the paraventricular thalamus is recruited in chronically stressed rats and regulates hypothalamic-pituitary-adrenal function. Bhatnagar, S., Viau, V., Chu, A., Soriano, L., Meijer, O.C., Dallman, M.F. J. Neurosci. (2000) [Pubmed]
  26. delta-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. Arvidsson, U., Dado, R.J., Riedl, M., Lee, J.H., Law, P.Y., Loh, H.H., Elde, R., Wessendorf, M.W. J. Neurosci. (1995) [Pubmed]
  27. Medial preoptic area afferents to periaqueductal gray medullo-output neurons: a combined Fos and tract tracing study. Rizvi, T.A., Murphy, A.Z., Ennis, M., Behbehani, M.M., Shipley, M.T. J. Neurosci. (1996) [Pubmed]
  28. Locus coeruleus involvement in the learning of classically conditioned bradycardia. Harris, G.C., Fitzgerald, R.D. J. Neurosci. (1991) [Pubmed]
  29. Isolation of a novel endogenous opiate analgesic from human blood. Pert, C.B., Pert, A., Tallman, J.F. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  30. The sites of origin brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. Beitz, A.J. J. Neurosci. (1982) [Pubmed]
  31. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. Tölle, T.R., Berthele, A., Zieglgänsberger, W., Seeburg, P.H., Wisden, W. J. Neurosci. (1993) [Pubmed]
  32. The peptidergic organization of the cat periaqueductal gray. II. The distribution of immunoreactive substance P and vasoactive intestinal polypeptide. Moss, M.S., Basbaum, A.I. J. Neurosci. (1983) [Pubmed]
  33. Involvement of cGMP in nociceptive processing by and sensitization of spinothalamic neurons in primates. Lin, Q., Peng, Y.B., Wu, J., Willis, W.D. J. Neurosci. (1997) [Pubmed]
  34. Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. Liu, C., Eriste, E., Sutton, S., Chen, J., Roland, B., Kuei, C., Farmer, N., Jörnvall, H., Sillard, R., Lovenberg, T.W. J. Biol. Chem. (2003) [Pubmed]
  35. Comparison of mice deficient in the high- or low-affinity neurotensin receptors, Ntsr1 or Ntsr2, reveals a novel function for Ntsr2 in thermal nociception. Maeno, H., Yamada, K., Santo-Yamada, Y., Aoki, K., Sun, Y.J., Sato, E., Fukushima, T., Ogura, H., Araki, T., Kamichi, S., Kimura, I., Yamano, M., Maeno-Hikichi, Y., Watase, K., Aoki, S., Kiyama, H., Wada, E., Wada, K. Brain Res. (2004) [Pubmed]
  36. Evidence for additional neurotensin receptor subtypes: neurotensin analogs that distinguish between neurotensin-mediated hypothermia and antinociception. Tyler, B.M., Cusack, B., Douglas, C.L., Souder, T., Richelson, E. Brain Res. (1998) [Pubmed]
  37. Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: suitability for immunogold ultrastructural localization of neural antigens. van Lookeren Campagne, M., Oestreicher, A.B., van der Krift, T.P., Gispen, W.H., Verkleij, A.J. J. Histochem. Cytochem. (1991) [Pubmed]
  38. Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro. Stezhka, V.V., Lovick, T.A. Neuroscience (1994) [Pubmed]
  39. Glutamate decarboxylase-immunoreactive neurons and terminals in the periaqueductal gray of the rat. Barbaresi, P., Manfrini, E. Neuroscience (1988) [Pubmed]
  40. Acupuncture mechanisms in rabbits studied with microinjection of antibodies against beta-endorphin, enkephalin and substance P. Han, J.S., Xie, G.X., Zhou, Z.F., Folkesson, R., Terenius, L. Neuropharmacology (1984) [Pubmed]
  41. Further observations on the relationship between adenosine deaminase-containing axons and trigeminal mesencephalic neurons: an electron microscopic, immunohistochemical and anterograde tracing study. Yamamoto, T., Shiosaka, S., Daddona, P.E., Nagy, J.I. Neuroscience (1988) [Pubmed]
  42. Implications of phosphoinositide 3-kinase in the mu- and delta-opioid receptor-mediated supraspinal antinociception in the mouse. Narita, M., Ohnishi, O., Nemoto, M., Yajima, Y., Suzuki, T. Neuroscience (2002) [Pubmed]
WikiGenes - Universities