The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

ABCA1 expression in carotid atherosclerotic plaques.

BACKGROUND AND PURPOSE: The ATP-binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux from cells, a key process in reverse cholesterol transport. Whereas previous investigations focused on mutations causing impaired ABCA1 function, we assessed the role of ABCA1 in human carotid atherosclerotic disease. METHODS: We compared the mRNA and protein levels of ABCA1, and one of its key regulators, the liver X receptor alpha (LXRalpha), between minimally and grossly atherosclerotic arterial tissue. We established ABCA1 and LXRalpha gene expression by real-time quantitative polymerase chain reaction in 10 control and 18 atherosclerotic specimens. Presence of ABCA1 protein was assessed by immunoblotting. To determine whether differences observed at a local level were reflected in the systemic circulation, we measured ABCA1 mRNA in leukocytes of 10 patients undergoing carotid endarterectomy and 10 controls without phenotypic atherosclerosis. RESULTS: ABCA1 and LXRalpha gene expression were significantly elevated in atherosclerotic plaques (P<0.0001 and 0.03, respectively). The increased mRNA levels of ABCA1 and LXRalpha were correlated in atherosclerotic tissue (r=0.85; P<0.0001). ABCA1 protein expression was significantly reduced in plaques compared with control tissues (P<0.0001). There were no differences in leukocyte ABCA1 mRNA expression (P=0.67). CONCLUSIONS: ABCA1 gene and protein are expressed in minimally atherosclerotic human arteries. Despite significant upregulation of ABCA1 mRNA, possibly mediated via LXRalpha, ABCA1 protein is markedly reduced in advanced carotid atherosclerotic lesions. No differences in leukocyte ABCA1 expression were found, suggesting the plaque microenvironment may contribute to the differential ABCA1 expression. We propose that the decreased level of ABCA1 protein is a key factor in the development of atherosclerotic lesions.[1]


  1. ABCA1 expression in carotid atherosclerotic plaques. Albrecht, C., Soumian, S., Amey, J.S., Sardini, A., Higgins, C.F., Davies, A.H., Gibbs, R.G. Stroke (2004) [Pubmed]
WikiGenes - Universities