Global effects of BCR/ABL and TEL/PDGFRbeta expression on the proteome and phosphoproteome: identification of the Rho pathway as a target of BCR/ABL.
Many leukemic oncogenes form as a consequence of gene fusions or mutation that result in the activation or overexpression of a tyrosine kinase. To identify commonalities and differences in the action of two such kinases, breakpoint cluster region (BCR)/ABL and TEL/PDGFRbeta, two-dimensional gel electrophoresis was employed to characterize their effects on the proteome. While both oncogenes affected expression of specific proteins, few common effects were observed. A number of proteins whose expression is altered by BCR/ABL, including gelsolin and stathmin, are related to cytoskeletal function whereas no such changes were seen in TEL/PDGFRbeta-transfected cells. Treatment of cells with the kinase inhibitor STI571 for 4-h reversed changes in expression of some of these cytoskeletal proteins. Correspondingly, BCR/ABL-transfected cells were less responsive to chemotactic and chemokinetic stimuli than non-transfected cells and TEL/PDGFRbeta-transfected Ba/F3 cells. Decreased motile response was reversed by a 16-h treatment with STI571. A phosphoprotein-specific gel stain was used to identify TEL/PDGFRbeta and BCR/ABL-mediated changes in the phosphoproteome. These included changes on Crkl, Ras-GAP-binding protein 1, and for BCR/ABL, cytoskeletal proteins such as tubulin, and Nedd5. Decreased phosphorylation of Rho-GTPase dissociation inhibitor (Rho GDI) was also observed in BCR/ABL-transfected cells. This results in the activation of the Rho pathway, and treatment of cells with Y27632, an inhibitor of Rho kinase, inhibited DNA synthesis in BCR/ABL-transfected Ba/F3 cells but not TEL/PDGFRbeta-expressing cells. Expression of a dominant-negative RhoA inhibited both DNA synthesis and transwell migration, demonstrating the significance of this pathway in BCR/ABL-mediated transformation.[1]References
- Global effects of BCR/ABL and TEL/PDGFRbeta expression on the proteome and phosphoproteome: identification of the Rho pathway as a target of BCR/ABL. Unwin, R.D., Sternberg, D.W., Lu, Y., Pierce, A., Gilliland, D.G., Whetton, A.D. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg