The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals.

The carotid body (CB) is the main arterial chemoreceptor. The most accepted model of arterial chemoreception postulates that carotid body glomus (type I) cells are the primary receptors, which are synaptically connected to the nerve terminals of petrosal ganglion (PG) neurons. In response to natural stimuli, glomus cells are expected to release one (or more) transmitter(s) which, acting on the peripheral nerve terminals of processes from chemosensory petrosal neurons, increases the sensory discharge. Among several molecules present in glomus cells, acetylcholine and adenosine nucleotides and dopamine are considered as excitatory transmitter candidates. In this review, we will examine recent evidence supporting the notion that acetylcholine and adenosine 5'-triphosphate are the main excitatory transmitters in the cat and rat carotid bodies. On the other hand, dopamine may act as a modulator of the chemoreception process in the cat, but as an excitatory transmitter in the rabbit carotid body.[1]


WikiGenes - Universities