The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Carotid Body

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Carotid Body

 

High impact information on Carotid Body

  • Enkephalin-, VIP- and substance P-like immunoreactivity in the carotid body [6].
  • Met- and Leu-enkephalin-like material occurred in considerable quantities in carotid body extracts and enkephalin-like immunoreactivity was localised in type I cells [6].
  • In glomus cells of the carotid body, the differential properties of O2-sensitive K+ and Ca2+ channels help us to understand the basic features of O2 chemoreception [7].
  • Low glucose-sensing cells in the carotid body [1].
  • We have tested the suitability of chromaffin-like carotid body glomus cells for dopamine cell replacement in Parkinsonian rats [8].
 

Chemical compound and disease context of Carotid Body

  • Normally, O2-sensitive K+ channels in neurosecretory type I carotid body cells are intimately involved in excitation of the intact organ by hypoxia [9].
  • In in vivo studies, close carotid body (intraarterial) administration of CP-96,345 attenuated the sensory response to hypoxia in a dose-dependent manner with 73% of the response abolished at doses of 0.3-0.6 mg/kg [10].
  • Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium [11].
  • 2. Prenatal hypoxia decreased the dopamine content in the carotid bodies at all ages, and decreased the utilisation rate of noradrenaline in the caudal part of the A2 (A2c), A1 and A5 noradrenergic brainstem cell groups at 3 weeks after birth [12].
  • 6. Our results show that the neonatal lamb possesses a carotid body steady-state CO2 sensitivity within a few days of birth, an age when hypoxia sensitivity is low [13].
 

Biological context of Carotid Body

 

Anatomical context of Carotid Body

 

Associations of Carotid Body with chemical compounds

 

Gene context of Carotid Body

  • Histologic analysis revealed no abnormalities of carotid body morphology in Hif1a(+/-) mice [26].
  • We found that Hoxa3 homozygous null mutant mice had the lack of the carotid body [21].
  • However, in the absence of target tissues, a large proportion of carotid body afferents could be rescued by implants containing BDNF [27].
  • Mash1 is required for glomus cell formation in the mouse carotid body [28].
  • In summary, our results suggest that Epo controls ventilation at the central (brainstem) and peripheral (carotid body) levels [29].
 

Analytical, diagnostic and therapeutic context of Carotid Body

References

  1. Low glucose-sensing cells in the carotid body. Pardal, R., López-Barneo, J. Nat. Neurosci. (2002) [Pubmed]
  2. Sudden infant death syndrome: increased carotid-body dopamine and noradrenaline content. Perrin, D.G., Cutz, E., Becker, L.E., Bryan, A.C., Madapallimatum, A., Sole, M.J. Lancet (1984) [Pubmed]
  3. Migraine, serotonin, and the carotid body. Behar, A.L., Deutsch, E., Pomerantz, E., Pfeifer, Y., Sulman, F.G. Lancet (1979) [Pubmed]
  4. Evidence that carotid bodies play an important role in glucoregulation in vivo. Koyama, Y., Coker, R.H., Stone, E.E., Lacy, D.B., Jabbour, K., Williams, P.E., Wasserman, D.H. Diabetes (2000) [Pubmed]
  5. Regulation of gene expression by hypoxia. Millhorn, D.E., Czyzyk-Krzeska, M., Bayliss, D.A., Lawson, E.E. Sleep. (1993) [Pubmed]
  6. Enkephalin-, VIP- and substance P-like immunoreactivity in the carotid body. Wharton, J., Polak, J.M., Pearse, A.G., McGregor, G.P., Bryant, M.G., Bloom, S.R., Emson, P.C., Bisgard, G.E., Will, J.A. Nature (1980) [Pubmed]
  7. Oxygen-sensing by ion channels and the regulation of cellular functions. López-Barneo, J. Trends Neurosci. (1996) [Pubmed]
  8. Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Espejo, E.F., Montoro, R.J., Armengol, J.A., López-Barneo, J. Neuron (1998) [Pubmed]
  9. O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Wyatt, C.N., Wright, C., Bee, D., Peers, C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  10. Selective inhibition of the carotid body sensory response to hypoxia by the substance P receptor antagonist CP-96,345. Prabhakar, N.R., Cao, H., Lowe, J.A., Snider, R.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Pardal, R., Ludewig, U., Garcia-Hirschfeld, J., Lopez-Barneo, J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  12. Prenatal hypoxia impairs the postnatal development of neural and functional chemoafferent pathway in rat. Peyronnet, J., Roux, J.C., Geloën, A., Tang, L.Q., Pequignot, J.M., Lagercrantz, H., Dalmaz, Y. J. Physiol. (Lond.) (2000) [Pubmed]
  13. Development of carotid chemoreceptor dynamic and steady-state sensitivity to CO2 in the newborn lamb. Calder, N.A., Kumar, P., Hanson, M.A. J. Physiol. (Lond.) (1997) [Pubmed]
  14. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Peng, Y.J., Overholt, J.L., Kline, D., Kumar, G.K., Prabhakar, N.R. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  15. Regulation of tyrosine hydroxylase gene expression in the rat carotid body by hypoxia. Czyzyk-Krzeska, M.F., Bayliss, D.A., Lawson, E.E., Millhorn, D.E. J. Neurochem. (1992) [Pubmed]
  16. Contribution of peripheral chemoreception to the depression of the hypoxic ventilatory response during halothane anesthesia in cats. Ide, T., Sakurai, Y., Aono, M., Nishino, T. Anesthesiology (1999) [Pubmed]
  17. Transmitter diversity in carotid body afferent neurons: dopaminergic and peptidergic phenotypes. Finley, J.C., Polak, J., Katz, D.M. Neuroscience (1992) [Pubmed]
  18. HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. Overholt, J.L., Ficker, E., Yang, T., Shams, H., Bright, G.R., Prabhakar, N.R. J. Neurophysiol. (2000) [Pubmed]
  19. Carotid body chemoreceptor function: hypothesis based on a new circuit model. Krammer, E.B. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  20. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Archer, S.L., Reeve, H.L., Michelakis, E., Puttagunta, L., Waite, R., Nelson, D.P., Dinauer, M.C., Weir, E.K. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  21. Homeobox gene hoxa3 is essential for the formation of the carotid body in the mouse embryos. Kameda, Y., Nishimaki, T., Takeichi, M., Chisaka, O. Dev. Biol. (2002) [Pubmed]
  22. Renal dopamine receptors in health and hypertension. Jose, P.A., Eisner, G.M., Felder, R.A. Pharmacol. Ther. (1998) [Pubmed]
  23. Carbon monoxide: a role in carotid body chemoreception. Prabhakar, N.R., Dinerman, J.L., Agani, F.H., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  24. Oxygen sensing in the body. Lahiri, S., Roy, A., Baby, S.M., Hoshi, T., Semenza, G.L., Prabhakar, N.R. Prog. Biophys. Mol. Biol. (2006) [Pubmed]
  25. Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Iturriaga, R., Alcayaga, J. Brain Res. Brain Res. Rev. (2004) [Pubmed]
  26. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Kline, D.D., Peng, Y.J., Manalo, D.J., Semenza, G.L., Prabhakar, N.R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  27. BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Hertzberg, T., Fan, G., Finley, J.C., Erickson, J.T., Katz, D.M. Dev. Biol. (1994) [Pubmed]
  28. Mash1 is required for glomus cell formation in the mouse carotid body. Kameda, Y. Dev. Biol. (2005) [Pubmed]
  29. Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. Soliz, J., Joseph, V., Soulage, C., Becskei, C., Vogel, J., Pequignot, J.M., Ogunshola, O., Gassmann, M. J. Physiol. (Lond.) (2005) [Pubmed]
  30. Opioid peptides in the rabbit carotid body: identification and evidence for co-utilization and interactions with dopamine. González-Guerrero, P.R., Rigual, R., González, C. J. Neurochem. (1993) [Pubmed]
  31. Melatonin attenuates rat carotid chemoreceptor response to hypercapnic acidosis. Tjong, Y.W., Chen, Y., Liong, E.C., Ip, S.F., Tipoe, G.L., Fung, M.L. J. Pineal Res. (2004) [Pubmed]
  32. Angiotensin AT1 receptor-mediated excitation of rat carotid body chemoreceptor afferent activity. Allen, A.M. J. Physiol. (Lond.) (1998) [Pubmed]
  33. Acetylcholine content of normal and denervated cat carotid bodies measured by pyrolysis gas chromatography/mass fragmentometry. Fidone, S.J., Weintraub, S.T., Stavinoha, W.B. J. Neurochem. (1976) [Pubmed]
 
WikiGenes - Universities