Neurons exclusively express N-Bak, a BH3 domain-only Bak isoform that promotes neuronal apoptosis.
Bak is generally recognized as a multidomain, pro-apoptotic member of the Bcl-2 family. Bak and Bax are functionally redundant in non-neuronal cells and represent a mitochondrial convergence point for cell death signaling pathways. This functional redundancy, however, may not exist in neurons in which the single deletion of Bax is sufficient to confer protection against a variety of cytotoxic insults. In the present study, we demonstrate that postnatal cortical and cerebellar granule neurons exclusively express an alternatively spliced, BH3 domain-only form of Bak (N-Bak), whereas astrocytes express only the full-length, multidomain form. Overexpression of N-Bak promotes Bax translocation in HeLa cells and induces neuronal cell death in cortical, hippocampal, and cerebellar granule neurons in a Bax-dependent manner. N-Bak interacts with Bcl-XL but not BAX, suggesting an indirect mechanism for promoting Bax translocation to the mitochondria. N-Bak message and protein levels are elevated in cortical neurons in response to DNA damage, and subsequent induction of neuronal death is significantly delayed by expressing a full-length Bak antisense plasmid. These results demonstrate that postnatal neurons solely express a BH3 domain-only form of Bak, which contributes to DNA damage-induced neuronal apoptosis. The absence of full-length Bak expression explains the near exclusive requirement for Bax in neuronal apoptosis.[1]References
- Neurons exclusively express N-Bak, a BH3 domain-only Bak isoform that promotes neuronal apoptosis. Uo, T., Kinoshita, Y., Morrison, R.S. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg