The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of sister chromatid recombination by histone H2AX.

Histone H2AX has a role in suppressing genomic instability and cancer. However, the mechanisms by which it performs these functions are poorly understood. After DNA breakage, H2AX is phosphorylated on serine 139 in chromatin near the break. We show here that H2AX serine 139 enforces efficient homologous recombinational repair of a chromosomal double-strand break (DSB) by using the sister chromatid as a template. BRCA1, Rad51, and CHK2 contribute to recombinational repair, in part independently of H2AX. H2AX(-/-) cells show increased use of single-strand annealing, an error-prone deletional mechanism of DSB repair. Therefore, the chromatin response around a chromosomal DSB, in which H2AX serine 139 phosphorylation plays a central role, "shapes" the repair process in favor of potentially error-free interchromatid homologous recombination at the expense of error-prone repair. H2AX phosphorylation may help set up a favorable disposition between sister chromatids.[1]

References

  1. Control of sister chromatid recombination by histone H2AX. Xie, A., Puget, N., Shim, I., Odate, S., Jarzyna, I., Bassing, C.H., Alt, F.W., Scully, R. Mol. Cell (2004) [Pubmed]
 
WikiGenes - Universities