A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens.
A complex mixture of fatty acid-derived aldehydes, ketones, and alcohols is released upon wounding of the moss Physcomitrella patens. To investigate the formation of these oxylipins at the molecular level we isolated a lipoxygenase from P. patens, which was identified in an EST library by sequence homology to lipoxygenases from plants. Sequence analysis of the cDNA showed that it exhibits a domain structure similar to that of type2 lipoxygenases from plants, harboring an N-terminal import signal for chloroplasts. The recombinant protein was identified as arachidonate 12-lipoxygenase and linoleate 13-lipoxygenase with a preference for arachidonic acid and eicosapentaenoic acid. In contrast to any other lipoxygenase cloned so far, this enzyme exhibited in addition an unusual high hydroperoxidase and also a fatty acid chain-cleaving lyase activity. Because of these unique features the pronounced formation of (2Z)-octen-1-ol, 1-octen-3-ol, the dienal (5Z,8Z,10E)-12-oxo-dodecatrienoic acid and 12-keto eicosatetraenoic acid was observed when arachidonic acid was administered as substrate. 12-Hydroperoxy eicosatetraenoic acid was found to be only a minor product. Moreover, the P. patens LOX has a relaxed substrate tolerance accepting C(18)-C(22) fatty acids giving rise to even more LOX-derived products. In contrast to other lipoxygenases a highly diverse product spectrum is formed by a single enzyme accounting for most of the observed oxylipins produced by the moss. This single enzyme might, in a fast and effective way, be involved in the formation of signal and/or defense molecules thus contributing to the broad resistance of mosses against pathogens.[1]References
- A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. Senger, T., Wichard, T., Kunze, S., Göbel, C., Lerchl, J., Pohnert, G., Feussner, I. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg