The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance.

A 1.8-million-member D-octapeptide combinatorial library was constructed in which each member comprised a diversity-containing N-terminal pentapeptide and a C-terminal amidated triarginine motif. The C-terminal motif concentrated the library members at the fungal cell surface. A primary screen for inhibitors of Saccharomyces cerevisiae and Candida albicans growth, together with an in vitro secondary screen with the S. cerevisiae plasma membrane ATPase (Pma1p) as a target, identified the antifungal D-octapeptide BM0 (D-NH(2)-RFWWFRRR-CONH(2)). Optimization of BM0 led to the construction of BM2 (D-NH(2)-RRRFWWFRRR-CONH(2)), which had broad-spectrum fungicidal activity against S. cerevisiae, Candida species, and Cryptococcus neoformans; bound strongly to the surfaces of fungal cells; inhibited the physiological activity of Pma1p; and appeared to target Pma1p, with 50% inhibitory concentrations in the range of 0.5 to 2.5 microM. At sub-MICs (<5 microM), BM2 chemosensitized to fluconazole (FLC) S. cerevisiae strains functionally hyperexpressing fungal lanosterol 14alpha-demethylase and resistance-conferring transporters of azole drugs. BM2 chemosensitized to FLC some FLC-resistant clinical isolates of C. albicans and C. dubliniensis and chemosensitized to itraconazole clinical isolates of C. krusei that are intrinsically resistant to FLC. The growth-inhibitory concentrations of BM2 did not cause fungal cell permeabilization, significant hemolysis of red blood cells, or the death of cultured HEp-2 epithelial cells. BM2 represents a novel class of broad-spectrum, surface-active, Pma1p- targeting fungicides which increases the potencies of azole drugs and circumvents azole resistance.[1]

References

  1. Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Monk, B.C., Niimi, K., Lin, S., Knight, A., Kardos, T.B., Cannon, R.D., Parshot, R., King, A., Lun, D., Harding, D.R. Antimicrob. Agents Chemother. (2005) [Pubmed]
 
WikiGenes - Universities