The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Euphol     4,4,10,13,14-pentamethyl-17- (6-methylhept...

Synonyms: TIRUCALLOL, Euphadienol, AGN-PC-00B5Y1, SureCN1952146, NSC-36571, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of lanosterol

  • Thus, the contents of the two lathosterols and the two methostenols were clearly higher in the gallstones, whereas lanosterol stayed almost totally, and other minor sterols were preferentially, in the bile [1].
  • Thus, for elimination of both of the 4-methyl groups of lanosterol, the 10 individual reactions catalyzed in this multicomponent system are identical in liver and hepatoma 7777 microsomes, and the rate-determining stop for both liver and hepatoma is the inital oxidative attack on the 4alpha-methyl group of cholesterol procursors [2].
  • Expression of the M. capsulatus MCCYP51FX fusion in Escherichia coli yielded a P450, which, when purified to homogeneity, had the predicted molecular mass approximately 62 kDa on SDS/PAGE and bound lanosterol as a putative substrate [3].
  • Sterols in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol [4].
  • Mechanisms of resistance to azoles in Candida albicans, the main etiologic agent of oropharyngeal candidiasis (OPC), include alterations in the target enzyme (lanosterol demethylase) and increased efflux of drug [5].
 

Psychiatry related information on lanosterol

 

High impact information on lanosterol

 

Chemical compound and disease context of lanosterol

 

Biological context of lanosterol

 

Anatomical context of lanosterol

 

Associations of lanosterol with other chemical compounds

 

Gene context of lanosterol

 

Analytical, diagnostic and therapeutic context of lanosterol

References

  1. Cholesterol precursor sterols, plant sterols, and cholestanol in human bile and gallstones. Miettinen, T.A., Kesäniemi, Y.A., Järvinen, H., Hästbacka, J. Gastroenterology (1986) [Pubmed]
  2. Investigation of the rate-determining microsomal reaction of cholesterol biosynthesis from lanosterol in Morris hepatomas and liver. Williams, M.T., Gaylor, J.L., Morris, H.P. Cancer Res. (1977) [Pubmed]
  3. A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. Jackson, C.J., Lamb, D.C., Marczylo, T.H., Warrilow, A.G., Manning, N.J., Lowe, D.J., Kelly, D.E., Kelly, S.L. J. Biol. Chem. (2002) [Pubmed]
  4. Sterols in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Dahl, J.S., Dahl, C.E., Bloch, K. Biochemistry (1980) [Pubmed]
  5. Multiple resistant phenotypes of Candida albicans coexist during episodes of oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Lopez-Ribot, J.L., McAtee, R.K., Perea, S., Kirkpatrick, W.R., Rinaldi, M.G., Patterson, T.F. Antimicrob. Agents Chemother. (1999) [Pubmed]
  6. Serum cholesterol, precursors and metabolites and cognitive performance in an aging population. Teunissen, C.E., De Vente, J., von Bergmann, K., Bosma, H., van Boxtel, M.P., De Bruijn, C., Jolles, J., Steinbusch, H.W., Lütjohann, D. Neurobiol. Aging (2003) [Pubmed]
  7. Supernatant protein factor, which stimulates the conversion of squalene to lanosterol, is a cytosolic squalene transfer protein and enhances cholesterol biosynthesis. Shibata, N., Arita, M., Misaki, Y., Dohmae, N., Takio, K., Ono, T., Inoue, K., Arai, H. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. Gachotte, D., Sen, S.E., Eckstein, J., Barbuch, R., Krieger, M., Ray, B.D., Bard, M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Pneumocysterol [(24Z)-ethylidenelanost-8-en-3beta-ol], a rare sterol detected in the opportunistic pathogen Pneumocystis carinii hominis: structural identity and chemical synthesis. Kaneshiro, E.S., Amit, Z., Swonger, M.M., Kreishman, G.P., Brooks, E.E., Kreishman, M., Jayasimhulu, K., Parish, E.J., Sun, H., Kizito, S.A., Beach, D.H. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  10. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Gachotte, D., Pierson, C.A., Lees, N.D., Barbuch, R., Koegel, C., Bard, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  11. Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparanol in cultured rat hepatoma cells. Popják, G., Meenan, A., Parish, E.J., Nes, W.D. J. Biol. Chem. (1989) [Pubmed]
  12. Speculations on the evolution of sterol structure and function. Bloch, K.E. CRC Crit. Rev. Biochem. (1979) [Pubmed]
  13. Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase. Corey, E.J., Matsuda, S.P., Bartel, B. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  14. Molecular cloning, characterization, and functional expression of rat oxidosqualene cyclase cDNA. Abe, I., Prestwich, G.D. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  15. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Otte, K., Kranz, H., Kober, I., Thompson, P., Hoefer, M., Haubold, B., Remmel, B., Voss, H., Kaiser, C., Albers, M., Cheruvallath, Z., Jackson, D., Casari, G., Koegl, M., Pääbo, S., Mous, J., Kremoser, C., Deuschle, U. Mol. Cell. Biol. (2003) [Pubmed]
  16. Active site topology of Saccharomyces cerevisiae lanosterol 14 alpha-demethylase (CYP51) and its G310D mutant (cytochrome P-450SG1). Tuck, S.F., Aoyama, Y., Yoshida, Y., Ortiz de Montellano, P.R. J. Biol. Chem. (1992) [Pubmed]
  17. Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation. Trzaskos, J.M., Bowen, W.D., Shafiee, A., Fischer, R.T., Gaylor, J.L. J. Biol. Chem. (1984) [Pubmed]
  18. Differential effects of cholesterol and lanosterol on artificial membranes. Yeagle, P.L., Martin, R.B., Lala, A.K., Lin, H.K., Bloch, K. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  19. Microsomal enzymes of cholesterol biosynthesis from lanosterol. Purification and characterization of delta 7-sterol 5-desaturase of rat liver microsomes. Kawata, S., Trzaskos, J.M., Gaylor, J.L. J. Biol. Chem. (1985) [Pubmed]
  20. In situ accumulation of 3 beta-hydroxylanost-8-en-32-aldehyde in hepatocyte cultures. A putative regulator of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Trzaskos, J.M., Favata, M.F., Fischer, R.T., Stam, S.H. J. Biol. Chem. (1987) [Pubmed]
  21. Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15 alpha-fluorolanost-7-en-3 beta-ol. A mechanism-based inhibitor of cholesterol biosynthesis. Trzaskos, J.M., Magolda, R.L., Favata, M.F., Fischer, R.T., Johnson, P.R., Chen, H.W., Ko, S.S., Leonard, D.A., Gaylor, J.L. J. Biol. Chem. (1993) [Pubmed]
  22. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Corey, E.J., Matsuda, S.P., Bartel, B. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  23. Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation. II. Lanosterol metabolism by purified P-450(14)DM and by intact microsomes. Aoyama, Y., Yoshida, Y., Sato, R. J. Biol. Chem. (1984) [Pubmed]
  24. Many facets of mammalian lanosterol 14alpha-demethylase from the evolutionarily conserved cytochrome P450 family CYP51. Debeljak, N., Fink, M., Rozman, D. Arch. Biochem. Biophys. (2003) [Pubmed]
  25. Lanosterol metabolism and sterol regulatory element binding protein (SREBP) expression in male germ cell maturation. Fon Tacer, K., Kalanj-Bognar, S., Waterman, M.R., Rozman, D. J. Steroid Biochem. Mol. Biol. (2003) [Pubmed]
  26. 15-substituted lanosterols: post-transcriptional suppressors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Anderson, J.A., Leonard, D.A., Cusack, K.P., Frye, L.L. Arch. Biochem. Biophys. (1995) [Pubmed]
  27. Enhanced sterol-acyl transferase activity promotes sterol accumulation in Saccharomyces cerevisiae. Polakowski, T., Bastl, R., Stahl, U., Lang, C. Appl. Microbiol. Biotechnol. (1999) [Pubmed]
  28. In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. Mo, C., Milla, P., Athenstaedt, K., Ott, R., Balliano, G., Daum, G., Bard, M. Biochim. Biophys. Acta (2003) [Pubmed]
  29. Cholesterol biosynthesis from lanosterol. Molecular cloning, tissue distribution, expression, chromosomal localization, and regulation of rat 7-dehydrocholesterol reductase, a Smith-Lemli-Opitz syndrome-related protein. Bae, S.H., Lee, J.N., Fitzky, B.U., Seong, J., Paik, Y.K. J. Biol. Chem. (1999) [Pubmed]
  30. Lanosterol 14 alpha-demethylase (P45014DM): effects of P45014DM inhibitors on sterol biosynthesis downstream of lanosterol. Tuck, S.F., Patel, H., Safi, E., Robinson, C.H. J. Lipid Res. (1991) [Pubmed]
  31. The effect of sterols on structures formed in the gel/subgel phase state of dipalmitoylphosphatidylcholine bilayers. Meyer, H.W., Semmler, K., Quinn, P.J. Mol. Membr. Biol. (1997) [Pubmed]
 
WikiGenes - Universities