The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Heparin-binding growth factor, pleiotrophin, mediates neuritogenic activity of embryonic pig brain-derived chondroitin sulfate/dermatan sulfate hybrid chains.

Chondroitin sulfate (CS) and dermatan sulfate (DS) chains play roles in the central nervous system. Most notably, CS/DS hybrid chains (E-CS/DS) purified from embryonic pig brains bind growth factors and promote neurite outgrowth toward embryonic mouse hippocampal neurons in culture. However, the neuritogenic mechanism is not well understood. Here we showed that pleiotrophin (PTN), a heparin-binding growth factor, produced mainly by glia cells, was the predominant binding partner for E-CS/DS in the membrane-associated protein fraction of neonatal rat brain. The CS/DS chains were separated on a PTN column into unbound, low affinity, and high affinity fractions. The latter two fractions promoted outgrowth of dendrite- and axon-like neurites, respectively, whereas the unbound fraction showed no such activity. The activity of the low affinity fraction was abolished by an anti-PTN antibody or when glia cells were removed from the culture. In contrast, the high affinity fraction displayed activity under both these conditions. Hence, PTN mainly from glia cells mediated the activity of the low affinity but not the high affinity fraction. The anti-CS antibody 473HD neutralized the neuritogenic activities of both fractions. Interaction analysis indicated that the 473HD epitope and PTN-binding domains in the E-CS/DS chains largely overlap. The three affinity subfractions differed in disaccharide composition and the distribution of l-iduronic acid-containing disaccharides along the chains. Oversulfated disaccharides and nonconsecutive iduronic acid-containing units were the requirements for the E-CS/DS chains to bind PTN and to exhibit the neuritogenic activities. Thus, CS subpopulations with distinct structures in the mammalian brain play different roles in neuritogenesis through distinct molecular mechanisms, at least in part by regulating the functions of growth factors.[1]


WikiGenes - Universities