DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways.
The tumor suppressor DBC2 belongs to a previously uncharacterized gene family, RHOBTB (Bric-a-brac, Tramtrack, Broad-complex). The biological roles of RHOBTB proteins, including DBC2, remain unclear. To understand the physiological functions of DBC2, a global approach was applied. Expression of DBC2 was manipulated in HeLa cells and RNA profiling of the cells was performed by microarray analyses. DBC2 was introduced into HeLa cells by a mammalian expression vector with a constitutive promoter. DBC2 knockdown was achieved by RNA interference with small interfering RNA. RNA profiles of these samples were performed by microarray analysis using Affymetrix GeneChip HG-U133A 2. 0. The microarray data were analyzed by Microarray Suite 5.0 ( MAS 5.0) and Robust Multichip Average (RMA). A list of genes whose expression was significantly altered (p<0.001) was generated and overlaid onto a cellular pathway map in the Ingenuity Systems' Pathway Knowledge Base (Winter'04 Release). Two networks were found to react substantially to DBC2 expression; namely, more than half of participating genes are affected. One of the networks regulates cell growth through cell-cycle control and apoptosis. The other network is related to cytoskeleton and membrane trafficking. Our findings suggest that the biological roles of DBC2 are related directly and/or indirectly to these cellular machineries.[1]References
- DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. Siripurapu, V., Meth, J., Kobayashi, N., Hamaguchi, M. J. Mol. Biol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg