The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Crystal structure of tRNA adenosine deaminase (TadA) from Aquifex aeolicus.

The bacterial tRNA adenosine deaminase (TadA) generates inosine by deaminating the adenosine residue at the wobble position of tRNA(Arg-2). This modification is essential for the decoding system. In this study, we determined the crystal structure of Aquifex aeolicus TadA at a 1.8-A resolution. This is the first structure of a deaminase acting on tRNA. A. aeolicus TadA has an alpha/beta/alpha three-layered fold and forms a homodimer. The A. aeolicus TadA dimeric structure is completely different from the tetrameric structure of yeast CDD1, which deaminates mRNA and cytidine, but is similar to the dimeric structure of yeast cytosine deaminase. However, in the A. aeolicus TadA structure, the shapes of the C-terminal helix and the regions between the beta4 and beta5 strands are quite distinct from those of yeast cytosine deaminase and a large cavity is produced. This cavity contains many conserved amino acid residues that are likely to be involved in either catalysis or tRNA binding. We made a docking model of TadA with the tRNA anticodon stem loop.[1]

References

  1. Crystal structure of tRNA adenosine deaminase (TadA) from Aquifex aeolicus. Kuratani, M., Ishii, R., Bessho, Y., Fukunaga, R., Sengoku, T., Shirouzu, M., Sekine, S., Yokoyama, S. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities