Parkin-deficient mice are not a robust model of parkinsonism.
Mutations in the human parkin gene cause autosomal recessive juvenile parkinsonism, a heritable form of Parkinson's disease (PD). To determine whether mutations in the mouse parkin gene (Park2) also result in a parkinsonian phenotype, we generated mice with a targeted deletion of parkin exon 2. Using an extensive behavioral screen, we evaluated neurological function, motor ability, emotionality, learning, and memory in aged Parkin-deficient mice. The behavioral profile of Parkin-deficient mice on a B6;129S4 genetic background was strikingly similar to that of control mice, and most differences were not reproducible by using coisogenic mice on a 129S4 genetic background. Moreover, catecholamine levels in the striatum, olfactory bulb, and spinal cord of Parkin-deficient mice were normal. In contrast to previous studies using independently generated Parkin-deficient mice, we found no evidence for nigrostriatal, cognitive, or noradrenergic dysfunction. Understanding why Parkin-deficient mice do not exhibit robust signs of parkinsonism could advance knowledge and treatment of PD.[1]References
- Parkin-deficient mice are not a robust model of parkinsonism. Perez, F.A., Palmiter, R.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg