The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Gpx6  -  glutathione peroxidase 6

Mus musculus

Synonyms: 1700020G18Rik, GPx-6, GSHPx-6, Glutathione peroxidase 6, Ry2d1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gpx6

 

Psychiatry related information on Gpx6

  • Major new insights are: Olfaction is accomplished in vertebrates by a very large number of receptors; olfactory sensory neurons express a small subset of the OR repertoire; in rat and mouse, axons of neurons expressing the same OR converge onto defined glomeruli in the olfactory bulb [5].
  • Behavioral phenotyping indicated that GAL-tgs displayed normal general health and sensory and motor abilities; however, GAL-tg mice showed selective performance deficits on the Morris spatial navigational task and the social transmission of food preference olfactory memory test [6].
  • Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb [7].
  • By using an operant conditioning paradigm, we show that CNGA4-null mice are profoundly impaired in the detection and discrimination of olfactory stimuli in the presence of an adapting background odor [8].
  • Recent observations have implicated the vomeronasal (accessory olfactory) system in the chemosensory control of rodent social behaviors [9].
 

High impact information on Gpx6

 

Chemical compound and disease context of Gpx6

 

Biological context of Gpx6

 

Anatomical context of Gpx6

 

Associations of Gpx6 with chemical compounds

  • To date the molecular signalling involved in this trans-synaptic induction has not yet been characterized; I have therefore studied the expression of dopaminergic properties (presence of TH and dopamine uptake) in dissociated cell cultures from embryonic mouse olfactory bulb [22].
  • Using a combination of LHRH immunocytochemistry and tritiated thymidine autoradiography in fetal mice, we show that LHRH neurons originate in the medial olfactory placode of the developing nose, migrate across the nasal septum and enter the forebrain with the nervus terminalis, arching into the septal-preoptic area and hypothalamus [29].
  • The formation of this memory is mediated by the accessory olfactory system, in which an increase in norepinephrine after mating reduces inhibitory transmission of gamma-aminobutyric acid from the granule cells to the mitral cells [30].
  • Induction of an olfactory memory by the activation of a metabotropic glutamate receptor [30].
  • For two unrelated ligands, androstenone and isovaleric acid, induction of olfactory sensitivity was odorant-specific and occurred only in inbred strains that initially had low sensitivity to the exposure odorant [31].
 

Physical interactions of Gpx6

  • In vivo proliferation of olfactory neuronal lineage cells thus involves functional binding of cyclin D1 with cdk2 and cdk4, with differential activation mechanisms for cdk2 and cdk4 [32].
  • Although virtually nothing is known about sensory transduction in the mammalian VNO, recent findings have raised the possibility that it proceeds via a G-protein-coupled mechanism and involves a cyclic nucleotide-gated ion channel as in the nasal olfactory epithelium [33].
  • The pattern of VSV immunoreactivity supports the idea that following infection of the olfactory bulb glomeruli, VSV spreads via both ventricular surfaces and retrograde transport within axons of neuromodulatory transmitter systems innervating the olfactory bulb [34].
 

Co-localisations of Gpx6

  • Alpha-internexin and peripherin were first found to be co-localized in the olfactory neuroepithelium during early development [35].
  • The CYP2A5 mRNA and the corresponding protein co-localized at most sites and were predominantly detected in the olfactory region, with an expression in sustentacular cells, Bowman's gland, and duct cells [36].
 

Regulatory relationships of Gpx6

 

Other interactions of Gpx6

 

Analytical, diagnostic and therapeutic context of Gpx6

  • We have employed gene targeting to visualize the pattern of projections of axons from vomeronasal sensory neurons in the accessory olfactory bulb [24].
  • Comparative autoradiography studies of brains of wild-type (wt) and 5-HT5A knockout (5A-KO) mice revealed the existence of binding sites with high affinity for [125I]LSD that correspond to 5-HT5A receptors and that are concentrated in the olfactory bulb, neocortex, and medial habenula [47].
  • Transplantation studies have been used to show that tangential migration of olfactory bulb interneuron precursors is retarded in NCAM-mutant mice, and that this defect reflects loss of NCAM polysialic acid (PSA) [48].
  • Interestingly, electroolfactogram (EOG) responses stimulated by either cAMP- or inositol 1,4,5-triphosphate- (IP3-) inducing odorants were completely ablated in AC3 mutants, despite the presence of AC2 and AC4 in olfactory cilia [49].
  • In a paper in this issue of Neuron, Lin et al. combined gas chromatography and intrinsic signal imaging to examine the responses of individual olfactory bulb glomeruli in the mouse to natural odors and their component parts [50].

References

  1. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Doetsch, F., Caillé, I., Lim, D.A., García-Verdugo, J.M., Alvarez-Buylla, A. Cell (1999) [Pubmed]
  2. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. Perlman, S., Evans, G., Afifi, A. J. Exp. Med. (1990) [Pubmed]
  3. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Brunet, L.J., Gold, G.H., Ngai, J. Neuron (1996) [Pubmed]
  4. Mammary tumors, hepatocellular carcinomas, and pancreatic islet changes in C3H-Avy Mice. Sass, B., Vernon, M.L., Peters, R.L., Kelloff, G.J. J. Natl. Cancer Inst. (1978) [Pubmed]
  5. Molecular biology of odorant receptors in vertebrates. Mombaerts, P. Annu. Rev. Neurosci. (1999) [Pubmed]
  6. Galanin transgenic mice display cognitive and neurochemical deficits characteristic of Alzheimer's disease. Steiner, R.A., Hohmann, J.G., Holmes, A., Wrenn, C.C., Cadd, G., Juréus, A., Clifton, D.K., Luo, M., Gutshall, M., Ma, S.Y., Mufson, E.J., Crawley, J.N. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  7. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Yamaguchi, M., Mori, K. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice. Kelliher, K.R., Ziesmann, J., Munger, S.D., Reed, R.R., Zufall, F. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  9. Sexual behavior and aggression in male mice: involvement of the vomeronasal system. Clancy, A.N., Coquelin, A., Macrides, F., Gorski, R.A., Noble, E.P. J. Neurosci. (1984) [Pubmed]
  10. Interchromosomal interactions and olfactory receptor choice. Lomvardas, S., Barnea, G., Pisapia, D.J., Mendelsohn, M., Kirkland, J., Axel, R. Cell (2006) [Pubmed]
  11. A nose by any other name (should smell as sweetly). Choi, G.B., Anderson, D.J. Cell (2005) [Pubmed]
  12. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Kulaga, H.M., Leitch, C.C., Eichers, E.R., Badano, J.L., Lesemann, A., Hoskins, B.E., Lupski, J.R., Beales, P.L., Reed, R.R., Katsanis, N. Nat. Genet. (2004) [Pubmed]
  13. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2 adrenergic receptor. Feinstein, P., Bozza, T., Rodriguez, I., Vassalli, A., Mombaerts, P. Cell (2004) [Pubmed]
  14. Ethanol hypersensitivity and olfactory discrimination defect in mice lacking a homolog of Drosophila neuralized. Ruan, Y., Tecott, L., Jiang, M.M., Jan, L.Y., Jan, Y.N. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  15. The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Rugarli, E.I., Di Schiavi, E., Hilliard, M.A., Arbucci, S., Ghezzi, C., Facciolli, A., Coppola, G., Ballabio, A., Bazzicalupo, P. Development (2002) [Pubmed]
  16. Anti-sexual and anxiogenic behavioral consequences of corticotropin-releasing factor overexpression are centrally mediated. Heinrichs, S.C., Min, H., Tamraz, S., Carmouché, M., Boehme, S.A., Vale, W.W. Psychoneuroendocrinology (1997) [Pubmed]
  17. Characterization of the mouse olfactory glutathione S-transferases during the acute phase response. Weech, M., Quash, M., Walters, E. J. Neurosci. Res. (2003) [Pubmed]
  18. Role of CYP2A5 and 2G1 in acetaminophen metabolism and toxicity in the olfactory mucosa of the Cyp1a2(-/-) mouse. Genter, M.B., Liang, H.C., Gu, J., Ding, X., Negishi, M., McKinnon, R.A., Nebert, D.W. Biochem. Pharmacol. (1998) [Pubmed]
  19. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Ressler, K.J., Sullivan, S.L., Buck, L.B. Cell (1993) [Pubmed]
  20. Science imitates art: the cloning of mice from olfactory sensory neurons. Ngai, J. Cell (2004) [Pubmed]
  21. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Zhao, H., Reed, R.R. Cell (2001) [Pubmed]
  22. Expression of dopaminergic phenotypes in the mouse olfactory bulb induced by the calcitonin gene-related peptide. Denis-Donini, S. Nature (1989) [Pubmed]
  23. Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons. Kramer, P.R., Wray, S. Genes Dev. (2000) [Pubmed]
  24. A map of pheromone receptor activation in the mammalian brain. Belluscio, L., Koentges, G., Axel, R., Dulac, C. Cell (1999) [Pubmed]
  25. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Feinstein, P., Mombaerts, P. Cell (2004) [Pubmed]
  26. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Dattani, M.T., Martinez-Barbera, J.P., Thomas, P.Q., Brickman, J.M., Gupta, R., Mårtensson, I.L., Toresson, H., Fox, M., Wales, J.K., Hindmarsh, P.C., Krauss, S., Beddington, R.S., Robinson, I.C. Nat. Genet. (1998) [Pubmed]
  27. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Matsunami, H., Buck, L.B. Cell (1997) [Pubmed]
  28. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Li, H.S., Chen, J.H., Wu, W., Fagaly, T., Zhou, L., Yuan, W., Dupuis, S., Jiang, Z.H., Nash, W., Gick, C., Ornitz, D.M., Wu, J.Y., Rao, Y. Cell (1999) [Pubmed]
  29. Origin of luteinizing hormone-releasing hormone neurons. Schwanzel-Fukuda, M., Pfaff, D.W. Nature (1989) [Pubmed]
  30. Induction of an olfactory memory by the activation of a metabotropic glutamate receptor. Kaba, H., Hayashi, Y., Higuchi, T., Nakanishi, S. Science (1994) [Pubmed]
  31. Induction of olfactory receptor sensitivity in mice. Wang, H.W., Wysocki, C.J., Gold, G.H. Science (1993) [Pubmed]
  32. Unusual regulation of cyclin D1 and cyclin-dependent kinases cdk2 and cdk4 during in vivo mitotic stimulation of olfactory neuron progenitors in adult mouse. Kastner, A., Moyse, E., Bauer, S., Jourdan, F., Brun, G. J. Neurochem. (2000) [Pubmed]
  33. Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. Berghard, A., Buck, L.B. J. Neurosci. (1996) [Pubmed]
  34. Distribution of vesicular stomatitis virus proteins in the brains of BALB/c mice following intranasal inoculation: an immunohistochemical analysis. Huneycutt, B.S., Plakhov, I.V., Shusterman, Z., Bartido, S.M., Huang, A., Reiss, C.S., Aoki, C. Brain Res. (1994) [Pubmed]
  35. Distribution of neuronal intermediate filament proteins in the developing mouse olfactory system. Chien, C.L., Lee, T.H., Lu, K.S. J. Neurosci. Res. (1998) [Pubmed]
  36. Cell-specific expression of CYP2A5 in the mouse respiratory tract: effects of olfactory toxicants. Piras, E., Franzén, A., Fernández, E.L., Bergström, U., Raffalli-Mathieu, F., Lang, M., Brittebo, E.B. J. Histochem. Cytochem. (2003) [Pubmed]
  37. Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Cau, E., Gradwohl, G., Fode, C., Guillemot, F. Development (1997) [Pubmed]
  38. Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Cau, E., Gradwohl, G., Casarosa, S., Kageyama, R., Guillemot, F. Development (2000) [Pubmed]
  39. Dentate gyrus formation requires Emx2. Pellegrini, M., Mansouri, A., Simeone, A., Boncinelli, E., Gruss, P. Development (1996) [Pubmed]
  40. Netrin 1 regulates ventral tangential migration of guidepost neurons in the lateral olfactory tract. Kawasaki, T., Ito, K., Hirata, T. Development (2006) [Pubmed]
  41. The Dlx5 homeodomain gene is essential for olfactory development and connectivity in the mouse. Levi, G., Puche, A.C., Mantero, S., Barbieri, O., Trombino, S., Paleari, L., Egeo, A., Merlo, G.R. Mol. Cell. Neurosci. (2003) [Pubmed]
  42. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Albrecht, U., Sutcliffe, J.S., Cattanach, B.M., Beechey, C.V., Armstrong, D., Eichele, G., Beaudet, A.L. Nat. Genet. (1997) [Pubmed]
  43. Nested expression domains of four homeobox genes in developing rostral brain. Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A., Boncinelli, E. Nature (1992) [Pubmed]
  44. The LIM-homeodomain protein Lhx2 is required for complete development of mouse olfactory sensory neurons. Hirota, J., Mombaerts, P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  45. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Xu, J., Liao, L., Ning, G., Yoshida-Komiya, H., Deng, C., O'Malley, B.W. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  46. Dystroglycan: brain localisation and chromosome mapping in the mouse. Górecki, D.C., Derry, J.M., Barnard, E.A. Hum. Mol. Genet. (1994) [Pubmed]
  47. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Grailhe, R., Waeber, C., Dulawa, S.C., Hornung, J.P., Zhuang, X., Brunner, D., Geyer, M.A., Hen, R. Neuron (1999) [Pubmed]
  48. The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Hu, H., Tomasiewicz, H., Magnuson, T., Rutishauser, U. Neuron (1996) [Pubmed]
  49. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Wong, S.T., Trinh, K., Hacker, B., Chan, G.C., Lowe, G., Gaggar, A., Xia, Z., Gold, G.H., Storm, D.R. Neuron (2000) [Pubmed]
  50. Sparse encoding of natural scents. Dulac, C. Neuron (2006) [Pubmed]
 
WikiGenes - Universities