The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of inhibitory signaling motifs of the natural killer cell receptor Siglec-7: attenuated recruitment of phosphatases by the receptor is attributed to two amino acids in the motifs.

Siglec-7 (p75/AIRM1) is an inhibitory receptor on human natural killer cells (NK cells) and monocytes. The cytoplasmic domain of Siglec-7 contains two signaling motifs: a membrane-proximal immunoreceptor tyrosine-based inhibitory motif (ITIM) (Ile435-Gln-Tyr-Ala-Pro-Leu440) and a membrane-distal motif (Asn458-Glu-Tyr-Ser-Glu-Ile463). We report here that, upon pervanadate (PV) treatment, Siglec-7 recruited the protein tyrosine phosphatases Src homology-2 (SH2) domain-containing protein-tyrosine phosphatase-1 (SHP-1) and SHP-2 less efficiently than did other inhibitory receptors such as Siglec-9 and leukocyte-associated Ig-like receptor (LAIR-1). Alignment of the amino acid sequences of the two Siglecs revealed only three amino acids difference in these motifs. To identify the amino acid(s) critical to recruitment efficiency, we prepared a series of Siglec-7-based mutants in which each of the three amino acids were replaced with the corresponding one of Siglec-9 (I435L, P439S, and N458T mutants). P439S and N458T mutants showed pronounced enhancement of SHP recruitment, but I435L mutant had little effect. A double mutant (P439S, N458T) or triple mutant (I435L, P439S, N458T) recruited SHPs as much as did Siglec-9, indicating that Pro439 in the proximal motif and Asn458 in the distal motif of Siglec-7 attenuate its ability to recruit phosphatases. These amino acids appeared to affect not only phosphatase recruitment but also the subsequent attenuation of Syk phosphorylation.[1]

References

 
WikiGenes - Universities