The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants.

Genetic deficiency of the plasma phospholipid transfer protein ( PLTP) in mice unexpectedly causes a substantial impairment in liver secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins. To explore the mechanism, we examined the three known pathways for hepatic apoB secretory control, namely endoplasmic reticulum (ER)/proteasome-associated degradation (ERAD), post-ER pre-secretory proteolysis (PERPP), and receptor-mediated degradation, also known as re-uptake. First, we found that ERAD and cell surface re-uptake were not active in PLTP-null hepatocytes. Moreover, ER-to-Golgi blockade by brefeldin A, which enhances ERAD, equalized total apoB recovery from PLTP-null and wild-type cells, indicating that the relevant process occurs post-ER. Second, because PERPP can be stimulated by intracellular reactive oxygen species (ROS), we examined hepatic redox status. Although we found previously that PLTP-null mice exhibit elevated plasma concentrations of vitamin E, a lipid anti-oxidant, we now discovered that their livers contain significantly less vitamin E and significantly more lipid peroxides than do livers of wild-type mice. Third, to establish a causal connection, the addition of vitamin E or treatment with an inhibitor of intracellular iron-dependent peroxidation, desferrioxamine, abolished the elevation in cellular ROS as well as the defect in apoB secretion from PLTP-null hepatocytes. Overall, we conclude that PLTP deficiency decreases liver vitamin E content, increases hepatic oxidant tone, and substantially enhances ROS-dependent destruction of newly synthesized apoB via a post-ER process. These findings are likely to be broadly relevant to hepatic apoB secretory control in vivo.[1]

References

 
WikiGenes - Universities