The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1LCWCG     (2S,7S,15S)-2,15-dihydroxy-7- methyl-6...

Synonyms: HMS2234B04
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of brefeldin A

 

High impact information on brefeldin A

 

Chemical compound and disease context of brefeldin A

 

Biological context of brefeldin A

 

Anatomical context of brefeldin A

 

Associations of brefeldin A with other chemical compounds

 

Gene context of brefeldin A

  • The exchange activity of ARNO is not inhibited by brefeldin A, an agent known to block vesicular transport and inhibit the exchange activity on ARF1 in cell extracts [30].
  • Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain [31].
  • Brefeldin A treatment induced further accumulation of caveolin-2 along with caveolin-1 in LD [32].
  • Co-expression of PAK4 and the constitutively active Cdc42HsV12 causes the redistribution of PAK4 to the brefeldin A-sensitive compartment of the Golgi membrane and the subsequent induction of filopodia and actin polymerization [33].
  • Plasma membrane and intracellular pools of AUX1 are interconnected by actin-dependent constitutive trafficking, which is not sensitive to the vesicle trafficking inhibitor brefeldin A [34].
 

Analytical, diagnostic and therapeutic context of brefeldin A

  • The membrane-mediated budding hypothesis was inspired by the microtubule-dependent extension of apparently uncoated, 90-nm-diameter membrane tubules from the Golgi apparatus and other organelles in vivo after treatment with brefeldin A, a drug that inhibits the assembly of coat proteins onto Golgi membranes [35].
  • Immunofluorescence studies with anti-ldlCp antibodies in mammalian cells established that ldlCp is a peripheral Golgi protein whose association with the Golgi is brefeldin A sensitive [36].
  • Probing mitochondrial Ca2+ with recombinant aequorin confirmed that this pool did not coincide with mitochondria, whereas its homogeneous distribution across the cytosol, as revealed by confocal microscopy, and its insensitivity to brefeldin A make localization within the Golgi complex unlikely [37].
  • Immunohistochemical studies on cocultures treated with brefeldin A, an inhibitor of protein secretion, indicated both epithelial and mesenchymal cells synthesize laminin alpha1 chain upon heterotypic cell- cell contact [38].
  • We have studied the effects of brefeldin A (BFA) on the tubular endosomes in AtT20 and HeLa cells (Tooze, J., and M. Hollinshead. 1991. J. Cell Biol. 115:635-653) by electron microscopy of cells labeled with three endocytic tracers, HRP, BSA-gold, and transferrin conjugated to HRP, and by immunofluorescence microscopy [39].

References

  1. Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Yewdell, J.W., Bennink, J.R. Science (1989) [Pubmed]
  2. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Chae, H.J., Kim, H.R., Xu, C., Bailly-Maitre, B., Krajewska, M., Krajewski, S., Banares, S., Cui, J., Digicaylioglu, M., Ke, N., Kitada, S., Monosov, E., Thomas, M., Kress, C.L., Babendure, J.R., Tsien, R.Y., Lipton, S.A., Reed, J.C. Mol. Cell (2004) [Pubmed]
  3. Apolipoprotein B48 glycosylation in abetalipoproteinemia and Anderson's disease. Berriot-Varoqueaux, N., Dannoura, A.H., Moreau, A., Verthier, N., Sassolas, A., Cadiot, G., Lachaux, A., Munck, A., Schmitz, J., Aggerbeck, L.P., Samson-Bouma, M.E. Gastroenterology (2001) [Pubmed]
  4. Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. Hori, O., Ichinoda, F., Tamatani, T., Yamaguchi, A., Sato, N., Ozawa, K., Kitao, Y., Miyazaki, M., Harding, H.P., Ron, D., Tohyama, M., M Stern, D., Ogawa, S. J. Cell Biol. (2002) [Pubmed]
  5. GLUT2 surface expression and intracellular transport via the constitutive pathway in pancreatic beta cells and insulinoma: evidence for a block in trans-Golgi network exit by brefeldin A. Thorens, B., Gérard, N., Dériaz, N. J. Cell Biol. (1993) [Pubmed]
  6. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Sheen, V.L., Ganesh, V.S., Topcu, M., Sebire, G., Bodell, A., Hill, R.S., Grant, P.E., Shugart, Y.Y., Imitola, J., Khoury, S.J., Guerrini, R., Walsh, C.A. Nat. Genet. (2004) [Pubmed]
  7. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., Jürgens, G. Cell (2003) [Pubmed]
  8. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., Hirokawa, N. Cell (1998) [Pubmed]
  9. Cytoplasmic coat proteins involved in endosome function. Whitney, J.A., Gomez, M., Sheff, D., Kreis, T.E., Mellman, I. Cell (1995) [Pubmed]
  10. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Bednarek, S.Y., Ravazzola, M., Hosobuchi, M., Amherdt, M., Perrelet, A., Schekman, R., Orci, L. Cell (1995) [Pubmed]
  11. Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. Vey, M., Schäfer, W., Berghöfer, S., Klenk, H.D., Garten, W. J. Cell Biol. (1994) [Pubmed]
  12. MHC class II-restricted presentation of native protein antigen by B cells is inhibitable by cycloheximide and brefeldin A. St-Pierre, Y., Watts, T.H. J. Immunol. (1990) [Pubmed]
  13. Differential effects of brefeldin A on chondroitin sulfate and hyaluronan synthesis in rat chondrosarcoma cells. Calabro, A., Hascall, V.C. J. Biol. Chem. (1994) [Pubmed]
  14. Secreted proteins from Mycobacterium tuberculosis gain access to the cytosolic MHC class-I antigen-processing pathway. Lewinsohn, D.M., Grotzke, J.E., Heinzel, A.S., Zhu, L., Ovendale, P.J., Johnson, M., Alderson, M.R. J. Immunol. (2006) [Pubmed]
  15. Cerulenin inhibits the cytotoxicity of ricin, modeccin, Pseudomonas toxin, and diphtheria toxin in brefeldin A-resistant cell lines. Oda, T., Wu, H.C. J. Biol. Chem. (1993) [Pubmed]
  16. A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1. Hsu, V.W., Shah, N., Klausner, R.D. Cell (1992) [Pubmed]
  17. Selective inhibition of transcytosis by brefeldin A in MDCK cells. Hunziker, W., Whitney, J.A., Mellman, I. Cell (1991) [Pubmed]
  18. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., Klausner, R.D. Cell (1991) [Pubmed]
  19. Inhibition by brefeldin A of presentation of exogenous protein antigens to MHC class II-restricted T cells. Adorini, L., Ullrich, S.J., Appella, E., Fuchs, S. Nature (1990) [Pubmed]
  20. Brefeldin A implicates egress from endoplasmic reticulum in class I restricted antigen presentation. Nuchtern, J.G., Bonifacino, J.S., Biddison, W.E., Klausner, R.D. Nature (1989) [Pubmed]
  21. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Lippincott-Schwartz, J., Donaldson, J.G., Schweizer, A., Berger, E.G., Hauri, H.P., Yuan, L.C., Klausner, R.D. Cell (1990) [Pubmed]
  22. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Wood, S.A., Park, J.E., Brown, W.J. Cell (1991) [Pubmed]
  23. Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effects of brefeldin A and G protein activators. Robinson, M.S., Kreis, T.E. Cell (1992) [Pubmed]
  24. Common signals control low density lipoprotein receptor sorting in endosomes and the Golgi complex of MDCK cells. Matter, K., Whitney, J.A., Yamamoto, E.M., Mellman, I. Cell (1993) [Pubmed]
  25. Axon membrane flows from the growth cone to the cell body. Dai, J., Sheetz, M.P. Cell (1995) [Pubmed]
  26. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Helms, J.B., Rothman, J.E. Nature (1992) [Pubmed]
  27. Class II MHC molecules can use the endogenous pathway of antigen presentation. Nuchtern, J.G., Biddison, W.E., Klausner, R.D. Nature (1990) [Pubmed]
  28. Action of brefeldin A blocked by activation of a pertussis-toxin-sensitive G protein. Ktistakis, N.T., Linder, M.E., Roth, M.G. Nature (1992) [Pubmed]
  29. VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Singh, B.B., Lockwich, T.P., Bandyopadhyay, B.C., Liu, X., Bollimuntha, S., Brazer, S.C., Combs, C., Das, S., Leenders, A.G., Sheng, Z.H., Knepper, M.A., Ambudkar, S.V., Ambudkar, I.S. Mol. Cell (2004) [Pubmed]
  30. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Chardin, P., Paris, S., Antonny, B., Robineau, S., Béraud-Dufour, S., Jackson, C.L., Chabre, M. Nature (1996) [Pubmed]
  31. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., Jackson, C.L. Mol. Cell (1999) [Pubmed]
  32. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell. Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K., Nomura, R. J. Cell Biol. (2001) [Pubmed]
  33. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. Abo, A., Qu, J., Cammarano, M.S., Dan, C., Fritsch, A., Baud, V., Belisle, B., Minden, A. EMBO J. (1998) [Pubmed]
  34. Subcellular Trafficking of the Arabidopsis Auxin Influx Carrier AUX1 Uses a Novel Pathway Distinct from PIN1. Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M., Friml, J. Plant Cell (2006) [Pubmed]
  35. Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Orci, L., Palmer, D.J., Ravazzola, M., Perrelet, A., Amherdt, M., Rothman, J.E. Nature (1993) [Pubmed]
  36. LDLC encodes a brefeldin A-sensitive, peripheral Golgi protein required for normal Golgi function. Podos, S.D., Reddy, P., Ashkenas, J., Krieger, M. J. Cell Biol. (1994) [Pubmed]
  37. Dynamic properties of an inositol 1,4,5-trisphosphate- and thapsigargin-insensitive calcium pool in mammalian cell lines. Pizzo, P., Fasolato, C., Pozzan, T. J. Cell Biol. (1997) [Pubmed]
  38. Laminin alpha1 chain synthesis in the mouse developing lung: requirement for epithelial-mesenchymal contact and possible role in bronchial smooth muscle development. Schuger, L., Skubitz, A.P., Zhang, J., Sorokin, L., He, L. J. Cell Biol. (1997) [Pubmed]
  39. In AtT20 and HeLa cells brefeldin A induces the fusion of tubular endosomes and changes their distribution and some of their endocytic properties. Tooze, J., Hollinshead, M. J. Cell Biol. (1992) [Pubmed]
 
WikiGenes - Universities