The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

v-Jun downregulates the alpha 2 (I) collagen target gene indirectly through Sp1/3.

Transformation of chick embryo fibroblasts (CEFs) by the v-Jun oncoprotein correlates with a downregulation of the alpha 2 (I) collagen gene. To investigate whether this gene constitutes a direct target of v-Jun, an analysis of a large proximal fragment of the promoter, extending from position -1080 to +109, was performed. Transient transfections with -1080/+109 and deleted derivatives revealed that a short proximal fragment, -433/+11, is the target for repression by v-Jun. Extensive analysis, conducted in CEFs and in Sp1/3-deficient Drosophila SL2 cells, further showed that (i) high constitutive activity of -433/+11 requires a direct binding of the ubiquitous Sp1 and/or Sp3 transcription factors acting on two distinct motifs, that is, a proximal TCC-rich region and an upstream GC box, and that (ii) repression by v-Jun does not require any direct binding of the oncoprotein to the DNA, but an indirect binding within a v-Jun-Sp1/3-DNA chromatin-associated complex. This situation is reminiscent of a situation previously reported with the tata-less, SPARC (secreted protein, acidic, and rich in cysteine) target promoter that regulates the expression of another extracellular matrix component in the same model of cell transformation. Taken together, these data reinforce the view that, at least in CEFs, v-Jun downregulates a family of direct target genes by binding to the DNA indirectly through Sp1/3.[1]

References

 
WikiGenes - Universities