The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A second protein kinase CK1- mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex.

Deregulated activation of the canonical Wnt signalling pathway leads to stabilization of beta-catenin and is critically involved in carcinogenesis by an inappropriate induction of lymphocyte enhancer factor (LEF-1)/beta-catenin-dependent transcription of Wnt target genes. Phosphorylation of the pathway components beta-catenin, Dishevelled, Axin and APC (adenomatous polyposis coli) by glycogen synthase kinase-3beta, CK1 and CK2 is of central importance in the regulation of the beta-catenin destruction complex. Here, we identify CK1 and CK2 as major kinases that directly bind to and phosphorylate LEF-1 inducing distinct, kinase-specific changes in the LEF-1/DNA complex. Moreover, CK1-dependent phosphorylation in contrast to CK2 disrupts the association of beta-catenin and LEF-1 but does not impair DNA binding of LEF-1. Sequential phosphorylation assays revealed that for efficient disruption of the LEF-1/beta-catenin complex, beta-catenin also has to be phosphorylated. Consistent with these observations, CK1-dependent phosphorylation inhibits, whereas CK2 activates LEF-1/beta-catenin transcriptional activity in reporter gene assays. These data are in line with a negative regulatory function of CK1 in the Wnt signalling pathway, where CK1 in addition to the beta-catenin destruction complex at a second level acts as a negative regulator of the LEF-1/beta-catenin transcription complex, thereby protecting cells from development of cancer.[1]

References

 
WikiGenes - Universities