The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator "stargazin" is related to the claudin family of proteins by Its ability to mediate cell-cell adhesion.

Mutations in the Cacng2 gene encoding the neuronal transmembrane protein stargazin result in recessively inherited epilepsy and ataxia in "stargazer" mice. Functional studies suggest a dual role for stargazin, both as a modulatory gamma subunit for voltage-dependent calcium channels and as a regulator of post-synaptic membrane targeting for alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors. Co-immunoprecipitation experiments demonstrate that stargazin can bind proteins of either complex in vivo, but it remains unclear whether it can associate with both complexes simultaneously. Cacng2 is one of eight closely related genes (Cacng1-8) encoding proteins with four transmembrane segments, cytoplasmic termini, and molecular masses between 25 and 44 kDa. This group of Cacng genes constitutes only one branch of a larger monophyletic assembly dominated by over 20 genes encoding proteins known as claudins. Claudins regulate cell adhesion and paracellular permeability as fundamental components of non-neuronal tight junctions. Because stargazin is structurally similar to claudins, we hypothesized that it might also have retained claudin-like functions inherited from a common ancestor. Here, we report that expression of stargazin in mouse L-fibroblasts results in cell aggregation comparable with that produced by claudins, and present evidence that the interaction is heterotypic and calcium dependent. The data suggest that the cell adhesion function of stargazin preceded its current role in neurons as a regulator of either voltage-dependent calcium channels or AMPA receptors. We speculate these complexes may have co-opted the established presence of stargazin at sites of close cell-cell contact to facilitate their own evolving intercellular signaling functions.[1]


WikiGenes - Universities