The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Temporal and spatial regulation of phosphoinositide signaling mediates cytokinesis.

Polarity is a prominent feature of both chemotaxis and cytokinesis. In chemotaxis, polarity is established by local accumulation of PI(3,4,5)P3 at the cell's leading edge, achieved through temporal and spatial regulation of PI3 kinases and the tumor suppressor, PTEN. We find that as migrating D. discoideum cells round up to enter cytokinesis, PI(3,4,5)P3 signaling is uniformly suppressed. Then, as the spindle and cell elongate, PI3 kinases and PTEN move to and function at the poles and furrow, respectively. Cell lines lacking both of these enzymatic activities fail to modulate PI(3,4,5)P3 levels, are defective in cytokinesis, and cannot divide in suspension. The cells continue to grow and duplicate their nuclei, generating large multinucleate cells. Furrows that fail to ingress between nuclei are unable to stably accumulate myosin filaments or suppress actin-filled ruffles. We propose that phosphoinositide-linked circuits, similar to those that bring about asymmetry during cell migration, also regulate polarity in cytokinesis.[1]

References

  1. Temporal and spatial regulation of phosphoinositide signaling mediates cytokinesis. Janetopoulos, C., Borleis, J., Vazquez, F., Iijima, M., Devreotes, P. Dev. Cell (2005) [Pubmed]
 
WikiGenes - Universities