The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Triptans induce vasoconstriction of human arteries and veins from the thoracic wall.

A common side effect of migraine treatment with triptans is chest symptoms. The origin of these symptoms is not known. The aim of the present study was to examine the vasocontractile effect of triptans in human arteries and veins from the thoracic wall and in coronary artery bypass grafts. In vitro pharmacology experiments showed that the 5-hydroxytryptamine (5-HT) type 1B and 1D receptor agonists, eletriptan, naratriptan, rizatriptan, sumatriptan, and zolmitriptan, induced vasoconstriction in the thoracic blood vessels from 38% to 57% of the patients. 5-carboxamidotryptamine (5-CT) and sumatriptan elicited a vasoconstriction that was antagonized by the 5-HT1B receptor antagonist SB224289, whereas the 5-HT1D receptor antagonist BRL115572 had no effect. 5-HT induced a contraction that was inhibited by the 5-HT2A receptor antagonist ketanserin. 5-HT2A, 5-HT1B, and 5-HT1D receptor mRNA levels were detected by real-time PCR in all blood vessels studied. In conclusion, triptans induce vasoconstriction in arteries and veins from the thoracic wall, most likely by activation of 5-HT1B receptors. This response could be observed in only 38% to 57% of the patients, which may provide an explanation for why a similar number of patients experience chest symptoms as a side effect of migraine treatment with triptans.[1]

References

  1. Triptans induce vasoconstriction of human arteries and veins from the thoracic wall. Wackenfors, A., Jarvius, M., Ingemansson, R., Edvinsson, L., Malmsjö, M. J. Cardiovasc. Pharmacol. (2005) [Pubmed]
 
WikiGenes - Universities