The endogenous CXXC motif governs the cadmium sensitivity of the renal Na+/glucose co-transporter.
Cadmium (Cd2+) poisoning causes severe renal disorders manifested by defects in reabsorptive transport of various compounds. It is reported here that the renal brush-border membrane Na+/glucose co-transporter-1 (SGLT1) is a molecular target for Cd2+ toxicity. In micromolar concentrations, Cd2+ acted as a noncompetitive, partial inhibitor of methyl-D-glucopyranoside uptake in vesicles from COS-7 cells transiently expressing SGLT1. In contrast, only a modest effect in the closely related Na+/myo-inositol co-transporter-1 (SMIT1) was observed. The factor responsible for this difference was the CXXC motif (X can be any residue) at the cytoplasmic end of the eighth transmembrane segment (TM8) of SGLT1. Thus, a mutational transfer of this motif conveyed Cd2+ sensitivity to SMIT1. Moreover, mimicking the inhibitory effect of Cd2+, the biarsenical molecule FlAsH-EDT2 strongly inhibited the SGLT1 that had an engineered tetracysteine motif at the cytoplasmic end of TM8. The experiments also showed that covalent binding of the sulfhydryl reactive biotin-PEO-maleimide to the SGLT1 wild type but not to the mutant lacking the CXXC motif was suppressed by Cd2+. Taken together, these results suggest that in SGLT1, Cd2+ binding to the CXXC motif induces conformational changes that cause a partial inhibition of d-glucose transport.[1]References
- The endogenous CXXC motif governs the cadmium sensitivity of the renal Na+/glucose co-transporter. Xia, X., Wang, G., Peng, Y., Tu, M.G., Jen, J., Fang, H. J. Am. Soc. Nephrol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









