The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Slc5a1  -  solute carrier family 5 (sodium/glucose...

Rattus norvegicus

Synonyms: High affinity sodium-glucose cotransporter, Na(+)/glucose cotransporter 1, Sglt1, Sodium/glucose cotransporter 1, Solute carrier family 5 member 1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Slc5a1

  • It is reported here that the renal brush-border membrane Na+/glucose co-transporter-1 (SGLT1) is a molecular target for Cd2+ toxicity [1].
  • These results suggest that an increased SGLT1 expression concomitant with intestinal hypertrophy in OLETF rats is partly associated with postprandial hyperglycaemia before the onset of insulin resistance and hyperinsulinaemia [2].
  • In this study, we examined the alterations of H(+)-peptide cotransporters (PEPT1 and PEPT2) and Na(+)-D-glucose cotransporters (SGLT1 and SGLT2) in chronic renal failure [3].
  • These data indicate that SGLT-1 activity is regulated during hypoxia at the posttranslational level [4].
  • To determine the contribution of hyperglycemia to the insulin resistance in various insulin-sensitive tissues of Zucker diabetic fatty (ZDF) rats, T-1095, an oral sodium-dependent glucose transporter (SGLT) inhibitor, was administered by being mixed into food [5].

Psychiatry related information on Slc5a1

  • Refeeding for 2 d after 4 d of food deprivation returned the diurnal variation in SGLT1 and PEPT1 protein expressions to normal [6].
  • Reports that food intake is stimulated by intracerebroventricular (i.c.v.) administration of the SGLT1 Na+-D-glucose cotransport inhibitor, phlorizin, suggest that decreased central glucose uptake is a stimulus for compensatory motor activity underlying restoration of energy imbalance [7].

High impact information on Slc5a1


Chemical compound and disease context of Slc5a1

  • RESULTS: Prenatal exposure of ethanol to rat pups leads to a decrease in their body weight, intestinal length and weight and reduces the uptake capacities of SGLT1 as well as energy dependent glycine and L-leucine transporters with respect to their age-matched controls [11].
  • CONCLUSIONS: The observation that 3-o-mg did not differ from the mannitol control indicates that SGLT-1 activation alone does not exacerbate hypoxia [12].

Biological context of Slc5a1


Anatomical context of Slc5a1


Associations of Slc5a1 with chemical compounds

  • We conclude that in the rat kidney, the expression of SGLT1 is represented by a 75-kDa protein localized largely in the PT S3 segments, where it exhibits gender differences (F > M) at both the protein and mRNA levels that are caused by androgen inhibition [18].
  • To test the above hypotheses we employed phlorizin (as an inhibitor of SGLT1) and N-(n-butyl)-deoxygalactonojirimycin (as an inhibitor of the lactase domain of LPH) in a rat everted-jejunal sac model [14].
  • Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1) [19].
  • Xenopus oocytes were injected with RNA transcript encoding recombinant sodium-glucose cotransporter 1, and uptake of 3H-labeled 3-O-methyl-D-glucopyranose (3-O-MG) was assessed [10].
  • Quercetin was a specific transport inhibitor, because it did not inhibit intestinal sugar transporters GLUT5 and SGLT1 that were injected and expressed in Xenopus oocytes [20].

Physical interactions of Slc5a1


Regulatory relationships of Slc5a1


Other interactions of Slc5a1


Analytical, diagnostic and therapeutic context of Slc5a1


  1. The endogenous CXXC motif governs the cadmium sensitivity of the renal Na+/glucose co-transporter. Xia, X., Wang, G., Peng, Y., Tu, M.G., Jen, J., Fang, H. J. Am. Soc. Nephrol. (2005) [Pubmed]
  2. Increased intestinal glucose absorption and postprandial hyperglycaemia at the early step of glucose intolerance in Otsuka Long-Evans Tokushima Fatty rats. Fujita, Y., Kojima, H., Hidaka, H., Fujimiya, M., Kashiwagi, A., Kikkawa, R. Diabetologia (1998) [Pubmed]
  3. Upregulation of H(+)-peptide cotransporter PEPT2 in rat remnant kidney. Takahashi, K., Masuda, S., Nakamura, N., Saito, H., Futami, T., Doi, T., Inui, K. Am. J. Physiol. Renal Physiol. (2001) [Pubmed]
  4. Hypoxia differentially regulates nutrient transport in rat jejunum regardless of luminal nutrient present. Kles, K.A., Tappenden, K.A. Am. J. Physiol. Gastrointest. Liver Physiol. (2002) [Pubmed]
  5. Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Nawano, M., Oku, A., Ueta, K., Umebayashi, I., Ishirahara, T., Arakawa, K., Saito, A., Anai, M., Kikuchi, M., Asano, T. Am. J. Physiol. Endocrinol. Metab. (2000) [Pubmed]
  6. The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats. Pan, X., Terada, T., Okuda, M., Inui, K. J. Nutr. (2004) [Pubmed]
  7. Induction of ependymal, glial, and neuronal transactivation by intraventricular administration of the SGLT1 Na+-D-glucose cotransporter inhibitor phlorizin. Briski, K.P., Marshall, E.S. Neurochem. Res. (2001) [Pubmed]
  8. Enteric glucagon 37 rather than pancreatic glucagon 29 stimulates glucose absorption in rat intestine. Stümpel, F., Scholtka, B., Hunger, A., Jungermann, K. Gastroenterology (1998) [Pubmed]
  9. Impaired intestinal sugar transport in cirrhotic rats: correction by low doses of insulin-like growth factor I. Castilla-Cortazar, I., Prieto, J., Urdaneta, E., Pascual, M., Nuñez, M., Zudaire, E., Garcia, M., Quiroga, J., Santidrian, S. Gastroenterology (1997) [Pubmed]
  10. Inhibition of glucose absorption in the rat jejunum: a novel action of alpha-D-glucosidase inhibitors. Hirsh, A.J., Yao, S.Y., Young, J.D., Cheeseman, C.I. Gastroenterology (1997) [Pubmed]
  11. Effect of prenatal exposure to ethanol on postnatal development of intestinal transport functions in rats. Bhalla, S., Mahmood, S., Mahmood, A. European journal of nutrition. (2004) [Pubmed]
  12. Luminal nutrients exacerbate intestinal hypoxia in the hypoperfused jejunum. Kles, K.A., Wallig, M.A., Tappenden, K.A. JPEN. Journal of parenteral and enteral nutrition. (2001) [Pubmed]
  13. Luminal leptin induces rapid inhibition of active intestinal absorption of glucose mediated by sodium-glucose cotransporter 1. Ducroc, R., Guilmeau, S., Akasbi, K., Devaud, H., Buyse, M., Bado, A. Diabetes (2005) [Pubmed]
  14. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Day, A.J., Gee, J.M., DuPont, M.S., Johnson, I.T., Williamson, G. Biochem. Pharmacol. (2003) [Pubmed]
  15. The apical localization of SGLT1 glucose transporter is determined by the short amino acid sequence in its N-terminal domain. Suzuki, T., Fujikura, K., Koyama, H., Matsuzaki, T., Takahashi, Y., Takata, K. Eur. J. Cell Biol. (2001) [Pubmed]
  16. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. Lee, W.S., Kanai, Y., Wells, R.G., Hediger, M.A. J. Biol. Chem. (1994) [Pubmed]
  17. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Gaudreault, N., Scriven, D.R., Moore, E.D. Diabetologia (2004) [Pubmed]
  18. Rat renal glucose transporter SGLT1 exhibits zonal distribution and androgen-dependent gender differences. Sabolić, I., Skarica, M., Gorboulev, V., Ljubojević, M., Balen, D., Herak-Kramberger, C.M., Koepsell, H. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  19. Ontogeny of intestinal safety factors: lactase capacities and lactose loads. O'Connor, T.P., Diamond, J. Am. J. Physiol. (1999) [Pubmed]
  20. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. Song, J., Kwon, O., Chen, S., Daruwala, R., Eck, P., Park, J.B., Levine, M. J. Biol. Chem. (2002) [Pubmed]
  21. Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Cheeseman, C.I. Am. J. Physiol. (1997) [Pubmed]
  22. Involvement of PKC and PKA in the inhibitory effect of leptin on intestinal galactose absorption. Barrenetxe, J., Sainz, N., Barber, A., Lostao, M.P. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  23. Hepatocyte growth factor up-regulates SGLT1 and GLUT5 gene expression after massive small bowel resection. Kato, Y., Yu, D., Schwartz, M.Z. J. Pediatr. Surg. (1998) [Pubmed]
  24. Expression of peptide transporter following intestinal transplantation in the rat. Motohashi, H., Masuda, S., Katsura, T., Saito, H., Sakamoto, S., Uemoto, S., Tanaka, K., Inui, K.I. J. Surg. Res. (2001) [Pubmed]
  25. Atrial natriuretic peptide and endothelin-3 target renal sodium-glucose cotransporter. Majowicz, M.P., Gonzalez Bosc, L.V., Albertoni Borghese, M.F., Delgado, M.F., Ortiz, M.C., Sterin Speziale, N., Vidal, N.A. Peptides (2003) [Pubmed]
  26. Cholecystokinin decreases intestinal hexose absorption by a parallel reduction in SGLT1 abundance in the brush-border membrane. Hirsh, A.J., Cheeseman, C.I. J. Biol. Chem. (1998) [Pubmed]
  27. Na(+)-D-glucose cotransporter in muscle capillaries increases glucose permeability. Elfeber, K., Stümpel, F., Gorboulev, V., Mattig, S., Deussen, A., Kaissling, B., Koepsell, H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  28. The age-associated decline in the intestinal uptake of glucose is not accompanied by changes in the mRNA or protein abundance of SGLT1. Drozdowski, L., Woudstra, T., Wild, G., Clandindin, M.T., Thomson, A.B. Mech. Ageing Dev. (2003) [Pubmed]
  29. Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry. Cramer, S.C., Pardridge, W.M., Hirayama, B.A., Wright, E.M. Diabetes (1992) [Pubmed]
WikiGenes - Universities